

MSL-IO

MSL-IO follows the data model used by HDF5 [https://www.hdfgroup.org/] to read and write data files – where there is a
Root, Groups and Datasets and these objects
each have Metadata associated with them.

[image: _images/hdf5_data_model.png]
The tree structure is similar to the file-system structure used by operating systems. Groups
are analogous to the directories (where Root is the root Group) and
Datasets are analogous to the files.

The data files that can be read or created are not restricted to HDF5 [https://www.hdfgroup.org/] files, but any file format that
has a Reader implemented can be read and data files can be created using any of the
Writers.

Getting Started

	Write a file

	Read a file

	Convert a file

	Read data in a table

Write a file

Suppose you want to create a new HDF5 [https://www.hdfgroup.org/] file. We first create an instance of
HDF5Writer

>>> from msl.io import HDF5Writer
>>> h5 = HDF5Writer()

then we can add Metadata to the Root,

>>> h5.add_metadata(one=1, two=2)

create a Dataset in the Root,

>>> dataset1 = h5.create_dataset('dataset1', data=[1, 2, 3, 4])

create a Group in the Root,

>>> my_group = h5.create_group('my_group')

and create a Dataset in my_group

>>> dataset2 = my_group.create_dataset('dataset2', data=[[1, 2], [3, 4]], three=3)

Finally, we write the file

>>> h5.write(file='my_file.h5')

Note

The file is not created until you call the write() or
save() method.

Read a file

The read() function is available to read a file. Provided that a Reader
exists to read the file a Root object is returned. We will read the file
that we created above.

>>> from msl.io import read
>>> root = read('my_file.h5')

You can print a representation of all Groups and Datasets
in the Root by calling the tree() method

>>> print(root.tree())
<HDF5Reader 'my_file.h5' (1 groups, 2 datasets, 2 metadata)>
 <Dataset '/dataset1' shape=(4,) dtype='<f8' (0 metadata)>
 <Group '/my_group' (0 groups, 1 datasets, 0 metadata)>
 <Dataset '/my_group/dataset2' shape=(2, 2) dtype='<f8' (1 metadata)>

Since the root object is a Group (which operates like a Python dict [https://docs.python.org/3/library/stdtypes.html#dict]) you can
iterate over the items that are in the file using

>>> for name, value in root.items():
... print('{!r} -- {!r}'.format(name, value))
'/dataset1' -- <Dataset '/dataset1' shape=(4,) dtype='<f8' (0 metadata)>
'/my_group' -- <Group '/my_group' (0 groups, 1 datasets, 0 metadata)>
'/my_group/dataset2' -- <Dataset '/my_group/dataset2' shape=(2, 2) dtype='<f8' (1 metadata)>

where value will either be a Group or a Dataset.

You can iterate over the Groups that are in the file

>>> for group in root.groups():
... print(group)
<Group '/my_group' (0 groups, 1 datasets, 0 metadata)>

or iterate over the Datasets

>>> for dataset in root.datasets():
... print(repr(dataset))
<Dataset '/dataset1' shape=(4,) dtype='<f8' (0 metadata)>
<Dataset '/my_group/dataset2' shape=(2, 2) dtype='<f8' (1 metadata)>

You can access the Metadata of any object through the metadata attribute

>>> root.metadata
<Metadata '/' {'one': 1, 'two': 2}>

You can access values of the Metadata as attributes

>>> root.metadata.one
1
>>> dataset2.metadata.three
3

or as keys

>>> root.metadata['two']
2
>>> dataset2.metadata['three']
3

When root is returned it is accessed in read-only mode

>>> root.read_only
True
>>> for name, value in root.items():
... print('is {!r} in read-only mode? {}'.format(name, value.read_only))
is '/dataset1' in read-only mode? True
is '/my_group' in read-only mode? True
is '/my_group/dataset2' in read-only mode? True

If you want to edit the Metadata for root, or modify any
Groups or Datasets in root, then you must first set
the object to be editable. Setting the read-only mode of root propagates that mode to all items within
root. For example,

>>> root.read_only = False

will make root and all Groups and all Datasets within root to be editable

>>> root.read_only
False
>>> for name, value in root.items():
... print('is {!r} in read-only mode? {}'.format(name, value.read_only))
is '/dataset1' in read-only mode? False
is '/my_group' in read-only mode? False
is '/my_group/dataset2' in read-only mode? False

You can make only a specific object (and it’s descendants) editable as well. You can make
my_group and dataset2 to be in read-only mode by the following (recall that root behaves
like a Python dict [https://docs.python.org/3/library/stdtypes.html#dict])

>>> root['my_group'].read_only = True

and this will keep root and dataset1 in editable mode, but change my_group and dataset2
to be in read-only mode

>>> root.read_only
False
>>> for name, value in root.items():
... print('is {!r} in read-only mode? {}'.format(name, value.read_only))
is '/dataset1' in read-only mode? False
is '/my_group' in read-only mode? True
is '/my_group/dataset2' in read-only mode? True

You can access the Groups and Datasets as keys or as class attributes

>>> root['my_group']['dataset2'].shape
(2, 2)
>>> root.my_group.dataset2.shape
(2, 2)

See Accessing Keys as Class Attributes for more information.

Convert a file

You can convert between file formats using any of the Writers.
Suppose you had an HDF5 [https://www.hdfgroup.org/] file and you wanted to convert it to the JSON [https://www.json.org/] format

>>> from msl.io import JSONWriter
>>> h5 = read('my_file.h5')
>>> writer = JSONWriter('my_file.json')
>>> writer.write(root=h5)

Read data in a table

The read_table() function is available to read a table from a file.

A table has the following properties:

	The first row is a header.

	All rows have the same number of columns.

	All data values in a column have the same data type.

The returned object is a Dataset with the header provided as metadata.

Suppose a file called my_table.csv contains the following information

 	x,
 	y,
 	z

 	1,
 	2,
 	3

 	4,
 	5,
 	6

 	7,
 	8,
 	9

 Install MSL-IO

Install MSL-IO

To install MSL-IO run

pip install msl-io

Alternatively, using the MSL Package Manager [https://msl-package-manager.readthedocs.io/en/stable/] run

msl install io

Dependencies

	Python 2.7, 3.5+

	numpy [https://www.numpy.org/]

	xlrd [https://xlrd.readthedocs.io/en/stable/] (bundled with MSL-IO)

Optional Dependencies

The following packages are not automatically installed when MSL-IO
is installed but may be required to read some data files.

	h5py [https://www.h5py.org/]

	google-api-python-client [https://pypi.org/project/google-api-python-client/]

	google-auth-httplib2 [https://pypi.org/project/google-auth-httplib2/]

	google-auth-oauthlib [https://pypi.org/project/google-auth-oauthlib/]

To include h5py when installing MSL-IO run

msl install io[h5py]

To include the Google-API packages when installing MSL-IO run

msl install io[google]

 Group

Group

A Group is analogous to a directory for an operating system. A Group
can contain any number of sub-Groups (i.e., sub-directories) and it can contain any number
of Datasets. It uses a naming convention analogous to UNIX file systems where every sub-directory is
separated from its parent directory by the '/' character.

From a Python perspective, a Group operates like a dict [https://docs.python.org/3/library/stdtypes.html#dict]. The keys are
the names of Group members, and the values are the members themselves
(Group or Dataset objects).

>>> print(root.tree())
 <JSONWriter 'example.json' (3 groups, 1 datasets, 0 metadata)>
 <Group '/a' (2 groups, 1 datasets, 0 metadata)>
 <Group '/a/b' (1 groups, 1 datasets, 0 metadata)>
 <Group '/a/b/c' (0 groups, 1 datasets, 0 metadata)>
 <Dataset '/a/b/c/dset' shape=(100,) dtype='<f8' (0 metadata)>

A Group can be in read-only mode, but can also be set to editable mode

>>> b.create_dataset('dset_b', data=[1, 2, 3, 4])
Traceback (most recent call last):
 ...
ValueError: Cannot modify <Group '/a/b' (1 groups, 1 datasets, 0 metadata)>. It is accessed in read-only mode.
>>> b.read_only = False
>>> b.create_dataset('dset_b', data=[1, 2, 3, 4])
<Dataset '/a/b/dset_b' shape=(4,) dtype='<f8' (0 metadata)>

The keys of a Group can also be accessed as class attributes

>>> root['a']['b']['c']['dset']
<Dataset '/a/b/c/dset' shape=(100,) dtype='<f8' (0 metadata)>
>>> root.a.b.c.dset
<Dataset '/a/b/c/dset' shape=(100,) dtype='<f8' (0 metadata)>

See Accessing Keys as Class Attributes for more information.

You can navigate through the tree by considering a Group to be an ancestor
or descendant of other Groups

>>> for ancestor in c.ancestors():
... print(ancestor)
 <Group '/a/b' (1 groups, 2 datasets, 0 metadata)>
 <Group '/a' (2 groups, 2 datasets, 0 metadata)>
 <JSONWriter 'example.json' (3 groups, 2 datasets, 0 metadata)>
>>> for descendant in b.descendants():
... print(descendant)
 <Group '/a/b/c' (0 groups, 1 datasets, 0 metadata)>

 Dataset

Dataset

A Dataset is analogous to a file for an operating system and it
is contained within a Group.

A Dataset is essentially a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with Metadata
and it can be accessed in read-only mode.

Since a Dataset can be thought of as an numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] the attributes of
an numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] are also valid for a Dataset. For example, suppose
my_dataset is a Dataset

>>> my_dataset
<Dataset '/my_dataset' shape=(5,) dtype='|V16' (2 metadata)>
>>> my_dataset.data
array([(0.23, 1.27), (1.86, 2.74), (3.44, 2.91), (5.91, 1.83), (8.73, 0.74)],
 dtype=[('x', '<f8'), ('y', '<f8')])

You can get the numpy.ndarray.shape [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape] using

>>> my_dataset.shape
(5,)

or convert the data in the Dataset to a Python list [https://docs.python.org/3/library/stdtypes.html#list],
using numpy.ndarray.tolist() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]

>>> my_dataset.tolist()
[(0.23, 1.27), (1.86, 2.74), (3.44, 2.91), (5.91, 1.83), (8.73, 0.74)]

To access the Metadata of a Dataset,
you call the metadata attribute

>>> my_dataset.metadata
<Metadata '/my_dataset' {'temperature': 20.13, 'humidity': 45.31}>

You can access values of the Metadata as attributes

>>> my_dataset.metadata.temperature
20.13

or as keys

>>> my_dataset.metadata['humidity']
45.31

Depending on the numpy.dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] that was used to create the underlying
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] for the Dataset the field names
can also be accessed as field attributes. For example, you can access the fields
in my_dataset as keys

>>> my_dataset['x']
array([0.23, 1.86, 3.44, 5.91, 8.73])

or as attributes

>>> my_dataset.x
array([0.23, 1.86, 3.44, 5.91, 8.73])

Note that the returned object is a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and therefore does not
contain any Metadata.

See Accessing Keys as Class Attributes for more information.

You can also chain multiple attribute calls together. For example, to get the
maximum x value in my_dataset you can use

>>> my_dataset.x.max()
8.73

Slicing and Indexing

Slicing and indexing a Dataset is a valid
operation, but returns a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] which does not contain
any Metadata.

Consider my_dataset from above. One can slice it

>>> my_dataset[::2]
array([(0.23, 1.27), (3.44, 2.91), (8.73, 0.74)],
 dtype=[('x', '<f8'), ('y', '<f8')])

or index it

>>> my_dataset[2]
(3.44, 2.91)

Since a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] is returned, you are responsible for keeping
track of the Metadata in slicing and indexing operations.
For example,

>>> my_subset = root.create_dataset('my_subset', data=my_dataset[::2], **my_dataset.metadata)
>>> my_subset
<Dataset '/my_subset' shape=(3,) dtype='|V16' (2 metadata)>
>>> my_subset.data
array([(0.23, 1.27), (3.44, 2.91), (8.73, 0.74)],
 dtype=[('x', '<f8'), ('y', '<f8')])
>>> my_subset.metadata
<Metadata '/my_subset' {'temperature': 20.13, 'humidity': 45.31}>

Arithmetic Operations

Arithmetic operations are valid with a Dataset, however,
the returned object will be a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and therefore all
Metadata of the Datasets
that are involved in the operation are not included in the returned object.

For example, suppose you have two Datasets that
contain the following information

>>> dset1
<Dataset '/dset1' shape=(3,) dtype='<f8' (1 metadata)>
>>> dset1.data
array([1., 2., 3.])
>>> dset1.metadata
<Metadata '/dset1' {'temperature': 20.3}>

>>> dset2
<Dataset '/dset2' shape=(3,) dtype='<f8' (1 metadata)>
>>> dset2.data
array([4., 5., 6.])
>>> dset2.metadata
<Metadata '/dset2' {'temperature': 21.7}>

You can directly add the Datasets, but the temperature
values in Metadata are not included in the returned object

>>> dset3 = dset1 + dset2
>>> dset3
array([5., 7., 9.])
>>> dset3.metadata
Traceback (most recent call last):
 File "<input>", line 1, in <module>
AttributeError: 'numpy.ndarray' object has no attribute 'metadata'

You are responsible for keeping track of the Metadata
in arithmetic operations, for example,

>>> temperatures = {'t1': dset1.metadata.temperature, 't2': dset2.metadata.temperature}
>>> dset3 = root.create_dataset('dset3', data=dset1+dset2, temperatures=temperatures)
>>> dset3
<Dataset '/dset3' shape=(3,) dtype='<f8' (1 metadata)>
>>> dset3.data
array([5., 7., 9.])
>>> dset3.metadata
<Metadata '/dset3' {'temperatures': {'t1': 20.3, 't2': 21.7}}>

A Dataset for Logging Records

The DatasetLogging class is a custom Dataset
that is also a Handler [https://docs.python.org/3/library/logging.html#logging.Handler] which automatically appends logging [https://docs.python.org/3/library/logging.html#module-logging] records
to the Dataset. See create_dataset_logging() for
more details.

When a file is read() it will load an object that was once a
DatasetLogging as a Dataset.
If you want to convert the Dataset to be a
DatasetLogging object, so that logging [https://docs.python.org/3/library/logging.html#module-logging] records are once
again appended to it, then call the require_dataset_logging() method
with the name argument equal to the value of name for the Dataset.

 Metadata

Metadata

All Group and Dataset objects contain Metadata. A
Metadata object is a dict [https://docs.python.org/3/library/stdtypes.html#dict] that can be made read only and allows
for accessing the keys of the dict [https://docs.python.org/3/library/stdtypes.html#dict] as class attributes (see Accessing Keys as Class Attributes for
more information).

For example, suppose that a file is read with the Root Group
having the following Metadata

>>> root.metadata
<Metadata '/' {'voltage': 1.2, 'voltage_unit': 'V'}>

A value can be accessed by specifying a key

>>> root.metadata['voltage']
1.2

or as a class attribute

>>> root.metadata.voltage
1.2

When a file is read, the Root object is returned in read-only mode so
you cannot modify the metadata

>>> root.metadata.voltage = 7.64
Traceback (most recent call last):
 ...
ValueError: Cannot modify <Metadata '/' {'voltage': 1.2, 'voltage_unit': 'V'}>. It is accessed in read-only mode.

However, you can allow root to be modified by setting the read_only
property to be False [https://docs.python.org/3/library/constants.html#False]

>>> root.metadata.read_only = False
>>> root.metadata.voltage = 7.64
>>> root.add_metadata(current=10.3, current_unit='mA')
>>> root.metadata
<Metadata '/' {'voltage': 7.64, 'voltage_unit': 'V', 'current': 10.3, 'current_unit': 'mA'}>

 Readers

Readers

The following Readers are available:

	DRS - Light Standards
	DRSReader
	DRSReader.can_read()

	DRSReader.read()

	HDF5
	HDF5Reader
	HDF5Reader.can_read()

	HDF5Reader.read()

	JSON
	JSONReader
	JSONReader.can_read()

	JSONReader.read()

Create a New Reader

When adding a new Reader class to the repository [https://github.com/MSLNZ/msl-io] the following
steps should be performed. Please follow the style guide [https://msl-package-manager.readthedocs.io/en/stable/developers_guide.html#style-guide].

Note

If you do not want to upload the new Reader class to the repository [https://github.com/MSLNZ/msl-io]
then you only need to write the code found in Step 2 to use your Reader
in your own program. Once you import your module in your code your Reader
will be available from the read() function.

	Create a fork [https://help.github.com/articles/fork-a-repo/] of the repository [https://github.com/MSLNZ/msl-io].

	Create a new Reader by following this template and save it to
the msl/io/readers/ [https://github.com/MSLNZ/msl-io/tree/main/msl/io/readers] directory.

import the necessary MSL-IO objects
from msl.io import register, Reader

register your Reader so that Python knows that your Reader exists
@register
class AnExampleReader(Reader):
 """Name your class to be whatever you want, i.e., change AnExampleReader"""

 @staticmethod
 def can_read(file, **kwargs):
 """This method answers the following question:

 Given a path-like object (e.g., a string, bytes or os.PathLike object)
 that represents the location of a file or a file-like object (e.g., a
 stream, socket or in-memory buffer) can your Reader read this file?

 You must perform all the necessary checks that *uniquely* answers this
 question. For example, checking that the file extension is ".csv" is
 not unique enough.

 The optional kwargs can be passed in via the msl.io.read() method.

 This method must return a boolean: True (can read) or False (cannot read)
 """
 return boolean

 def read(self, **kwargs):
 """This method reads the data file(s).

 Your Reader class is a Root object. The optional kwargs can be
 passed in via the msl.io.read() method.

 The data file to read is available at self.file

 To add metadata to Root use self.add_metadata()

 To create a Group in Root use self.create_group()

 To create a Dataset in Root use self.create_dataset()

 This method should not return anything.
 """

	Import your Reader in the msl/io/readers/__init__.py module.

	Add an example data file to the tests/samples [https://github.com/MSLNZ/msl-io/tree/main/tests/samples] directory and add a test case to the tests/ [https://github.com/MSLNZ/msl-io/blob/main/tests/] directory
to make sure that your Reader is returned by calling the read() function using your example
data file as the input and that the information in the returned object is correct. Run the tests using
python setup.py tests (ideally you would run the tests for all
currently-supported versions of Python, see also condatests.py [https://msl-package-manager.readthedocs.io/en/stable/new_package_readme.html#create-readme-condatests]).

	Create a new msl.io.readers.<name of your module from Step 2>.rst file in docs/_api [https://github.com/MSLNZ/msl-io/tree/main/docs/_api]. Follow the
template that is used for the other .rst files in this directory.

	Add the new Reader, alphabetically, to the .. toctree:: in docs/readers.rst [https://github.com/MSLNZ/msl-io/blob/main/docs/readers.rst]. Follow the
template that is used for the other Readers.

	Add yourself to AUTHORS.rst and add a note in CHANGES.rst that you created this new Reader. These
files are located in the root directory of the MSL-IO package.

	Build the documentation running python setup.py docs (view the documentation by opening the
docs/_build/html/index.html file).

	If running the tests pass and building the documentation show no errors/warnings then create a pull request [https://help.github.com/articles/creating-a-pull-request-from-a-fork/].

 msl.io.readers.detector_responsivity_system module

msl.io.readers.detector_responsivity_system module

Reader for the Detector Responsivity System from Light Standards at MSL.

	
class msl.io.readers.detector_responsivity_system.DRSReader(file)

	Bases: Reader

Reader for the Detector Responsivity System from Light Standards at MSL.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	Checks if the first line starts with DRS and ends with Shindo.

	
read(**kwargs)

	Reads the .DAT and corresponding .LOG file.

	Parameters:

	**kwargs – All key-value pairs are ignored.

 msl.io.readers.hdf5 module

msl.io.readers.hdf5 module

Reader for the HDF5 [https://www.hdfgroup.org/] file format.

Attention

This Reader loads the entire HDF5 [https://www.hdfgroup.org/] file in memory. If you need to use any of
the more advanced features of an HDF5 [https://www.hdfgroup.org/] file, it is best to directly load
the file using H5py [https://www.h5py.org/].

	
class msl.io.readers.hdf5.HDF5Reader(file)

	Bases: Reader

Reader for the HDF5 [https://www.hdfgroup.org/] file format.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	The HDF5 [https://www.hdfgroup.org/] file format has a standard signature [https://support.hdfgroup.org/HDF5/doc/H5.format.html#Superblock].

The first 8 bytes are \x89HDF\r\n\x1a\n.

	
read(**kwargs)

	Reads the HDF5 [https://www.hdfgroup.org/] file.

	Parameters:

	**kwargs – All key-value pairs are passed to File [https://docs.h5py.org/en/stable/high/file.html#h5py.File].

 msl.io.readers.json_ module

msl.io.readers.json_ module

Read a file that was created by JSONWriter.

	
class msl.io.readers.json_.JSONReader(file)

	Bases: Reader

Read a file that was created by JSONWriter.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	Checks if the text MSL JSONWriter is in the first line of the file.

	
read(**kwargs)

	Read the file that was created by JSONWriter

If a Metadata key has a value that is a
list [https://docs.python.org/3/library/stdtypes.html#list] then the list is converted to an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
with dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] = object [https://docs.python.org/3/library/functions.html#object]

	Parameters:

	**kwargs – Accepts encoding and errors keyword arguments which are passed to
open() [https://docs.python.org/3/library/functions.html#open]. The default encoding value is 'utf-8' and the default
errors value is 'strict'. All additional keyword arguments are passed to
json.loads [https://docs.python.org/3/library/json.html#json.loads].

 Writers

Writers

The following Writers are available:

	HDF5
	HDF5Writer
	HDF5Writer.write()

	JSON
	JSONWriter
	JSONWriter.write()

Create a New Writer

When adding a new Writer class to the repository [https://github.com/MSLNZ/msl-io] the following
steps should be performed. Please follow the style guide [https://msl-package-manager.readthedocs.io/en/stable/developers_guide.html#style-guide].

	Create a fork [https://help.github.com/articles/fork-a-repo/] of the repository [https://github.com/MSLNZ/msl-io].

	Create a new Writer by following this template and save it to
the msl/io/writers/ [https://github.com/MSLNZ/msl-io/tree/main/msl/io/writers] directory.

import the necessary MSL-IO objects
from msl.io import Writer

class MyExampleWriter(Writer):
 """Name your class to be whatever you want, i.e., change MyExampleWriter"""

 def write(self, file=None, root=None, **kwargs):
 """Implement your write method with the above signature.

 Parameters

 file : path-like or file-like
 The file to write to. If None then uses the value of
 `file` that was specified when MyExampleWriter was instantiated.
 root : Root
 Write `root` to the file. If None then write the Groups
 and Datasets that were created using MyExampleWriter.
 **kwargs
 Optional key-value pairs.
 """

	Add test cases to the tests/ [https://github.com/MSLNZ/msl-io/blob/main/tests/] directory to make sure that your Writer works as expected. It is
recommended to try converting a Root object between your Writer and other
Writers that are available to verify different file-format conversions. Also, look at the test
modules that begin with test_writer for more examples. Run the tests using python setup.py tests
(ideally you would run the tests for all currently-supported versions of
Python, see also condatests.py [https://msl-package-manager.readthedocs.io/en/stable/new_package_readme.html#create-readme-condatests]).

	Create a new msl.io.writers.<name of your module from Step 2>.rst file in docs/_api [https://github.com/MSLNZ/msl-io/tree/main/docs/_api]. Follow the
template that is used for the other .rst files in this directory.

	Add the new Writer, alphabetically, to the .. toctree:: in docs/writers.rst [https://github.com/MSLNZ/msl-io/blob/main/docs/writers.rst]. Follow the
template that is used for the other Writers.

	Add the new Writer, alphabetically, to the .. autosummary:: in docs/api_docs.rst [https://github.com/MSLNZ/msl-io/blob/main/docs/api_docs.rst]. Follow the
template that is used for the other Writers.

	Add yourself to AUTHORS.rst and add a note in CHANGES.rst that you created this new Writer. These
files are located in the root directory of the MSL-IO package.

	Build the documentation running python setup.py docs (view the documentation by opening the
docs/_build/html/index.html file).

	If running the tests pass and building the documentation show no errors/warnings then create a pull request [https://help.github.com/articles/creating-a-pull-request-from-a-fork/].

 msl.io.writers.hdf5 module

msl.io.writers.hdf5 module

Writer for the HDF5 [https://www.hdfgroup.org/] file format.

Attention

requires that the h5py [https://www.h5py.org/] package is installed.

	
class msl.io.writers.hdf5.HDF5Writer(file=None, **metadata)

	Bases: Writer

Create a HDF5 [https://www.hdfgroup.org/] writer.

You can use HDF5Writer as a context manager [https://docs.python.org/3/reference/compound_stmts.html#with].
For example,

with HDF5Writer('my_file.h5') as root:
 root.create_dataset('dset', data=[1, 2, 3])

This will automatically write root to the specified file when
the with [https://docs.python.org/3/reference/compound_stmts.html#with] block exits.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the data to. Can also be specified in the write() method.

	**metadata – Key-value pairs that are used as Metadata
of the Root.

	
write(file=None, root=None, **kwargs)

	Write to a HDF5 [https://www.hdfgroup.org/] file.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the root to. If None [https://docs.python.org/3/library/constants.html#None] then uses the value of
file that was specified when HDF5Writer was instantiated.

	root (Root, optional) – Write root in HDF5 [https://www.hdfgroup.org/] format. If None [https://docs.python.org/3/library/constants.html#None] then write the
Groups and Datasets
in this HDF5Writer.

	**kwargs – All key-value pairs are passed to File [https://docs.h5py.org/en/stable/high/file.html#h5py.File].

 msl.io.writers.json_ module

msl.io.writers.json_ module

Writer for a JSON [https://www.json.org/] file format. The corresponding Reader is
JSONReader.

	
class msl.io.writers.json_.JSONWriter(file=None, **metadata)

	Bases: Writer

Create a JSON [https://www.json.org/] writer.

You can use JSONWriter as a context manager [https://docs.python.org/3/reference/compound_stmts.html#with].
For example,

>>> with JSONWriter('example.json') as root:
... dset = root.create_dataset('dset', data=[1, 2, 3])
... root.update_context_kwargs(indent=4)

This will automatically write root to the specified file using
indent=4 as a keyword argument to the write() method when
the with [https://docs.python.org/3/reference/compound_stmts.html#with] block exits.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the data to. Can also be specified in the write() method.

	**metadata – Key-value pairs that are used as Metadata
of the Root.

	
write(file=None, root=None, **kwargs)

	Write to a JSON [https://www.json.org/] file.

The first line in the output file contains a description that the
file was created by the JSONWriter. It begins with a # and
contains a version number.

Version 1.0 specifications

	Use the 'dtype' and 'data' keys to uniquely identify a
JSON [https://www.json.org/] object as a Dataset.

	If a Metadata key has a value that is a
Metadata object then the key becomes the name
of a Group and the value becomes
Metadata of that Group.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the root to. If None [https://docs.python.org/3/library/constants.html#None] then uses the value of
file that was specified when JSONWriter was instantiated.

	root (Root, optional) – Write root in JSON [https://www.json.org/] format. If None [https://docs.python.org/3/library/constants.html#None] then write the
Groups and Datasets
in this JSONWriter.

	**kwargs – Accepts mode, encoding and errors keyword arguments which are passed
to open() [https://docs.python.org/3/library/functions.html#open]. The default encoding value is 'utf-8' and the default
errors value is 'strict'. All additional keyword arguments are passed to
json.dump [https://docs.python.org/3/library/json.html#json.dump].
The default indentation is 2.

 MSL-IO API Documentation

MSL-IO API Documentation

The following functions are available to read a file

	read(file, **kwargs)

	Read a file that has a Reader implemented.

	read_table(file, **kwargs)

	Read data in a table format from a file.

	ExcelReader(file, **kwargs)

	Read an Excel spreadsheet (.xls and .xlsx).

	GSheetsReader(file, **kwargs)

	Read a Google Sheets spreadsheet.

the following classes are available as Writers

	HDF5Writer([file])

	Create a HDF5 [https://www.hdfgroup.org/] writer.

	JSONWriter([file])

	Create a JSON [https://www.json.org/] writer.

and general helper functions

	checksum(file[, algorithm, chunk_size, ...])

	Get the checksum of a file.

	copy(source, destination[, overwrite, ...])

	Copy a file.

	git_head(directory)

	Get information about the HEAD of a repository.

	is_admin()

	Check if the current process is being run as an administrator.

	is_dir_accessible(path[, strict])

	Check if a directory exists and is accessible.

	is_file_readable(file[, strict])

	Check if a file exists and is readable.

	remove_write_permissions(path)

	Remove all write permissions of a file.

	run_as_admin([args, executable, cwd, ...])

	Run a process as an administrator and return its output.

	search(folder[, pattern, levels, ...])

	Search for files starting from a root folder.

	send_email(config, recipients[, sender, ...])

	Send an email.

Package Structure

	msl.io
	read()

	read_table()

	version_info

	msl.io.base
	Reader
	Reader.can_read()

	Reader.get_bytes()

	Reader.get_extension()

	Reader.get_lines()

	Reader.read()

	Root
	Root.file

	Root.tree()

	Writer
	Writer.save()

	Writer.set_root()

	Writer.update_context_kwargs()

	Writer.write()

	msl.io.constants
	HOME_DIR

	IS_PYTHON2

	IS_PYTHON3

	msl.io.dataset
	Dataset
	Dataset.copy()

	Dataset.data

	Dataset.read_only

	msl.io.dataset_logging
	DatasetLogging
	DatasetLogging.attributes

	DatasetLogging.date_fmt

	DatasetLogging.logger

	DatasetLogging.remove_empty_rows()

	DatasetLogging.remove_handler()

	DatasetLogging.set_logger()

	msl.io.dictionary
	Dictionary
	Dictionary.clear()

	Dictionary.items()

	Dictionary.keys()

	Dictionary.read_only

	Dictionary.values()

	msl.io.google_api
	GDrive
	GDrive.MIME_TYPE_FOLDER

	GDrive.ROOT_NAMES

	GDrive.copy()

	GDrive.create_folder()

	GDrive.delete()

	GDrive.download()

	GDrive.empty_trash()

	GDrive.file_id()

	GDrive.folder_id()

	GDrive.is_file()

	GDrive.is_folder()

	GDrive.is_read_only()

	GDrive.move()

	GDrive.path()

	GDrive.read_only()

	GDrive.rename()

	GDrive.shared_drives()

	GDrive.upload()

	GMail
	GMail.profile()

	GMail.send()

	GSheets
	GSheets.MIME_TYPE

	GSheets.SERIAL_NUMBER_ORIGIN

	GSheets.add_sheets()

	GSheets.append()

	GSheets.cells()

	GSheets.copy()

	GSheets.create()

	GSheets.delete_sheets()

	GSheets.rename_sheet()

	GSheets.sheet_id()

	GSheets.sheet_names()

	GSheets.to_datetime()

	GSheets.values()

	GSheets.write()

	GoogleAPI
	GoogleAPI.close()

	GoogleAPI.service

	GValueOption
	GValueOption.FORMATTED

	GValueOption.FORMULA

	GValueOption.UNFORMATTED

	GDateTimeOption
	GDateTimeOption.FORMATTED_STRING

	GDateTimeOption.SERIAL_NUMBER

	GCellType
	GCellType.BOOLEAN

	GCellType.CURRENCY

	GCellType.DATE

	GCellType.DATE_TIME

	GCellType.EMPTY

	GCellType.ERROR

	GCellType.NUMBER

	GCellType.PERCENT

	GCellType.SCIENTIFIC

	GCellType.STRING

	GCellType.TIME

	GCellType.UNKNOWN

	GCell
	GCell.value

	GCell.type

	GCell.formatted

	msl.io.group
	Group
	Group.add_dataset()

	Group.add_dataset_logging()

	Group.add_group()

	Group.ancestors()

	Group.create_dataset()

	Group.create_dataset_logging()

	Group.create_group()

	Group.datasets()

	Group.descendants()

	Group.groups()

	Group.is_dataset()

	Group.is_dataset_logging()

	Group.is_group()

	Group.remove()

	Group.require_dataset()

	Group.require_dataset_logging()

	Group.require_group()

	msl.io.metadata
	Metadata
	Metadata.copy()

	Metadata.fromkeys()

	msl.io.tables
	extension_delimiter_map

	read_table_excel()

	read_table_gsheets()

	read_table_text()

	msl.io.utils
	checksum()

	copy()

	get_basename()

	git_head()

	is_admin()

	is_dir_accessible()

	is_file_readable()

	register()

	remove_write_permissions()

	run_as_admin()

	search()

	send_email()

	msl.io.vertex
	Vertex
	Vertex.add_metadata()

	Vertex.metadata

	Vertex.name

	Vertex.parent

	Vertex.read_only

	msl.io.readers
	Submodules
	msl.io.readers.detector_responsivity_system module
	DRSReader
	DRSReader.can_read()

	DRSReader.read()

	msl.io.readers.excel module
	ExcelReader
	ExcelReader.close()

	ExcelReader.read()

	ExcelReader.sheet_names()

	ExcelReader.workbook

	msl.io.readers.gsheets module
	GSheetsReader
	GSheetsReader.read()

	GSheetsReader.sheet_names()

	msl.io.readers.hdf5 module
	HDF5Reader
	HDF5Reader.can_read()

	HDF5Reader.read()

	msl.io.readers.json_ module
	JSONReader
	JSONReader.can_read()

	JSONReader.read()

	msl.io.readers.spreadsheet module
	Spreadsheet
	Spreadsheet.file

	Spreadsheet.read()

	Spreadsheet.sheet_names()

	Spreadsheet.to_indices()

	Spreadsheet.to_letters()

	Spreadsheet.to_slices()

	msl.io.writers
	Submodules
	msl.io.writers.hdf5 module
	HDF5Writer
	HDF5Writer.write()

	msl.io.writers.json_ module
	JSONWriter
	JSONWriter.write()

 msl.io package

msl.io package

Read and write data files.

	
msl.io.read(file, **kwargs)

	Read a file that has a Reader implemented.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read. For example, it could be a str [https://docs.python.org/3/library/stdtypes.html#str] representing
a file system path or a stream.

	**kwargs – All keyword arguments are passed to the
Reader.can_read()
and Reader.read() methods.

	Returns:

	Reader – The data from the file.

	Raises:

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If no Reader exists to be able to read
 the specified file.

	
msl.io.read_table(file, **kwargs)

	Read data in a table format from a file.

A table has the following properties:

	The first row is a header.

	All rows have the same number of columns.

	All data values in a column have the same data type.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read. For example, it could be a str [https://docs.python.org/3/library/stdtypes.html#str] representing
a file system path or a stream. If file is a Google Sheets spreadsheet
then file must end with .gsheet even if the ID of the spreadsheet
is specified.

	**kwargs – If the file is an Excel spreadsheet then the keyword arguments are passed to
read_table_excel(). If a Google Sheets spreadsheet then
the keyword arguments are passed to read_table_gsheets().
Otherwise, all keyword arguments are passed to read_table_text().

	Returns:

	Dataset – The table as a Dataset. The header is included as metadata.

	
msl.io.version_info = version_info(major=0, minor=1, micro=0, releaselevel='final')

	Contains the version information as a (major, minor, micro, releaselevel) tuple.

	Type:

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]

 msl.io.base_io module

msl.io.base_io module

Base classes for all Readers. and Writers.

	
class msl.io.base.Reader(file)

	Bases: Root

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	Whether this Reader can read the file specified by file.

Important

You must override this method.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to check whether the Reader can read it.

	**kwargs – Key-value pairs that the Reader class may need
when checking if it can read the file.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Either True [https://docs.python.org/3/library/constants.html#True] (can read) or False [https://docs.python.org/3/library/constants.html#False] (cannot read).

	
static get_bytes(file, *args)

	Return bytes from a file.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read bytes from.

	*args (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int], optional) – The position(s) in the file to retrieve bytes from.

Examples:

	get_bytes(file) \(\rightarrow\) returns all bytes

	get_bytes(file, 5) \(\rightarrow\) returns the first 5 bytes

	get_bytes(file, -5) \(\rightarrow\) returns the last 5 bytes

	get_bytes(file, 5, 10) \(\rightarrow\) returns bytes 5 through
10 (inclusive)

	get_bytes(file, 3, -1) \(\rightarrow\) skips the first 2 bytes
and returns the rest

	get_bytes(file, -8, -4) \(\rightarrow\) returns the eighth-
through fourth-last bytes (inclusive)

	get_bytes(file, 1, -1, 2) \(\rightarrow\) returns every other byte

	Returns:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] – The bytes from the file.

	
static get_extension(file)

	Return the extension of the file.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to get the extension of.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The extension, including the '.'.

	
static get_lines(file, *args, **kwargs)

	Return lines from a file.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read lines from.

	*args (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int], optional) – The line(s) in the file to get.

Examples:

	get_lines(file) \(\rightarrow\) returns all lines

	get_lines(file, 5) \(\rightarrow\) returns the first 5 lines

	get_lines(file, -5) \(\rightarrow\) returns the last 5 lines

	get_lines(file, 2, 4) \(\rightarrow\) returns lines 2, 3 and 4

	get_lines(file, 4, -1) \(\rightarrow\) skips the first 3 lines
and returns the rest

	get_lines(file, 2, -2) \(\rightarrow\) skips the first and last
lines and returns the rest

	get_lines(file, -4, -2) \(\rightarrow\) returns the fourth-,
third- and second-last lines

	get_lines(file, 1, -1, 6) \(\rightarrow\) returns every sixth
line in the file

	**kwargs –
	remove_empty_lines : bool [https://docs.python.org/3/library/functions.html#bool]

Whether to remove all empty lines. Default is False [https://docs.python.org/3/library/constants.html#False].

	encoding : str [https://docs.python.org/3/library/stdtypes.html#str]

The name of the encoding to use to decode the file. The default is 'utf-8'.

	errors : str [https://docs.python.org/3/library/stdtypes.html#str]

An optional string that specifies how encoding errors are to be handled.
Either 'strict' or 'ignore'. The default is 'strict'.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – The lines from the file. Trailing whitespace is stripped from each line.

	
read(**kwargs)

	Read the file.

The file can be accessed by the file
property of the Reader, i.e., self.file

Important

You must override this method.

	Parameters:

	**kwargs – Key-value pairs that the Reader class may need
when reading the file.

	
class msl.io.base.Root(file, **metadata)

	Bases: Group

The root [https://en.wikipedia.org/wiki/Tree_(graph_theory)#Rooted_tree] vertex in a tree [https://en.wikipedia.org/wiki/Tree_(graph_theory)].

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file object to associate with the Root.

	**metadata – Key-value pairs that can be used as Metadata
for the Root.

	
property file

	The file
object that is associated with the Root.

	Type:

	path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]

	
tree(indent=2)

	A representation of the tree structure [https://en.wikipedia.org/wiki/Tree_structure] of all Groups
and Datasets that are in Root.

	Parameters:

	indent (int [https://docs.python.org/3/library/functions.html#int], optional) – The amount of indentation to add for each recursive level.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The tree structure [https://en.wikipedia.org/wiki/Tree_structure].

	
class msl.io.base.Writer(file=None, **metadata)

	Bases: Root

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the data to. Can also be specified in the write() method.

	**metadata – Key-value pairs that are used as Metadata
of the Root.

	
save(file=None, root=None, **kwargs)

	Alias for write().

	
set_root(root)

	Set a new Root for the Writer.

Attention

This will clear the Metadata of the Writer
and all Groups and Datasets
that the Writer currently contains. The file that was specified when
the Writer was created does not change.

	Parameters:

	root (Root) – The new Root for the Writer.

	
update_context_kwargs(**kwargs)

	When a Writer is used as a context manager [https://docs.python.org/3/reference/compound_stmts.html#with] the
write() method is automatically called when exiting the
context manager [https://docs.python.org/3/reference/compound_stmts.html#with]. You can specify the keyword arguments
that will be passed to the write() method by calling
update_context_kwargs() with the appropriate key-value pairs
before the context manager [https://docs.python.org/3/reference/compound_stmts.html#with] exits. You can call this
method multiple times since the key-value pairs get added to the
underlying dict [https://docs.python.org/3/library/stdtypes.html#dict] (via dict.update() [https://docs.python.org/3/library/stdtypes.html#dict.update]) that contains
all keyword arguments which are passed to the write() method.

	
write(file=None, root=None, **kwargs)

	Write to a file.

Important

You must override this method.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the root to. If None [https://docs.python.org/3/library/constants.html#None] then uses the
file value that was specified when the Writer
was instantiated.

	root (Root, optional) – Write the root object in the file format of this Writer.
This is useful when converting between different file formats.

	**kwargs – Additional key-value pairs to use when writing the file.

 msl.io.constants module

msl.io.constants module

Constants used by MSL-IO.

	
msl.io.constants.HOME_DIR = '/home/docs/.msl/io'

	The default directory where all files that are used by MSL-IO are located.

Can be overwritten by specifying a MSL_IO_HOME environment variable.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.io.constants.IS_PYTHON2 = False

	Whether Python 2 is being used.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
msl.io.constants.IS_PYTHON3 = True

	Whether Python 3 is being used.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

 msl.io.dataset module

msl.io.dataset module

A Dataset is essentially a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with Metadata.

	
class msl.io.dataset.Dataset(name, parent, read_only, shape=(0,), dtype=<class 'float'>, buffer=None, offset=0, strides=None, order=None, data=None, **metadata)

	Bases: Vertex

A Dataset is essentially a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] with Metadata.

Do not instantiate directly. Create a new Dataset using
create_dataset().

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name to associate with this Dataset.

	parent (Group) – The parent Group to the Dataset.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the Dataset is to be accessed in read-only mode.

	shape – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	dtype – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	buffer – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	offset – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	strides – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	order – See numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	data – If not None [https://docs.python.org/3/library/constants.html#None] then it must be either a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or
an array-like object which will be passed to numpy.asarray() [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray],
as well as dtype and order, to be used as the underlying data.

	**metadata – All other key-value pairs will be used as
Metadata for this Dataset.

	
copy(read_only=None)

	Create a copy of this Dataset.

	Parameters:

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the copy should be created in read-only mode. If None [https://docs.python.org/3/library/constants.html#None] then
creates a copy using the mode for the Dataset that is being copied.

	Returns:

	Dataset – A copy of this Dataset.

	
property data

	The data of the Dataset.

Note

You do not have to call this attribute to get access to the
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]. You can directly call the
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] attribute from the Dataset
object.

For example,

>>> dset
<Dataset '/my_data' shape=(4, 3) dtype='<f8' (0 metadata)>
>>> dset.data
array([[0., 1., 2.],
 [3., 4., 5.],
 [6., 7., 8.],
 [9., 10., 11.]])
>>> dset.size
12
>>> dset.tolist()
[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0], [9.0, 10.0, 11.0]]
>>> dset.mean(axis=0)
array([4.5, 5.5, 6.5])
>>> dset[::2]
array([[0., 1., 2.],
 [6., 7., 8.]])

	Type:

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
property read_only

	Whether this Dataset is in read-only mode.

This is equivalent to setting the WRITEABLE property in numpy.ndarray.setflags() [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setflags.html#numpy.ndarray.setflags].

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

 msl.io.dataset_logging module

msl.io.dataset_logging module

A Dataset that handles logging [https://docs.python.org/3/library/logging.html#module-logging] records.

	
class msl.io.dataset_logging.DatasetLogging(name, parent, level=0, attributes=None, logger=None, date_fmt=None, **kwargs)

	Bases: Dataset, Handler [https://docs.python.org/3/library/logging.html#logging.Handler]

A Dataset that handles logging [https://docs.python.org/3/library/logging.html#module-logging] records.

Do not instantiate directly. Create a new DatasetLogging using
create_dataset_logging().

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name to associate with the Dataset.

	parent (Group) – The parent Group to the Dataset.

	level (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The logging level [https://docs.python.org/3/library/logging.html#levels] to use.

	attributes (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The attribute names [https://docs.python.org/3/library/logging.html#logrecord-attributes] to include in the
Dataset for each logging record [https://docs.python.org/3/library/logging.html#log-record].

	logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger], optional) – The Logger [https://docs.python.org/3/library/logging.html#logging.Logger] that this DatasetLogging object
will be added to. If None [https://docs.python.org/3/library/constants.html#None] then it is added to the root Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

	date_fmt (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] format code [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior]
to use to represent the asctime attribute [https://docs.python.org/3/library/logging.html#logrecord-attributes] in.

	**kwargs – Additional keyword arguments are passed to Dataset.
The default behaviour is to append every logging record [https://docs.python.org/3/library/logging.html#log-record]
to the Dataset. This guarantees that the size of the
Dataset is equal to the number of
logging records [https://docs.python.org/3/library/logging.html#log-record] that were added to it. However, this behaviour
can decrease the performance if many logging records [https://docs.python.org/3/library/logging.html#log-record] are
added often because a copy of the data in the Dataset is
created for each logging record [https://docs.python.org/3/library/logging.html#log-record] that is added. You can improve
the performance by specifying an initial size of the Dataset
by including a shape or a size keyword argument. This will also automatically
create additional empty rows in the Dataset, that is
proportional to the size of the Dataset, if the size of the
Dataset needs to be increased. If you do this then you will
want to call remove_empty_rows() before writing DatasetLogging to a
file or interacting with the data in DatasetLogging to remove the extra
rows that were created.

	
property attributes

	The attribute names [https://docs.python.org/3/library/logging.html#logrecord-attributes]
used by the DatasetLogging object.

	Type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
property date_fmt

	The datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] format code [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior]
that is used to represent the asctime attribute [https://docs.python.org/3/library/logging.html#logrecord-attributes] in.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property logger

	The Logger [https://docs.python.org/3/library/logging.html#logging.Logger] that this
DatasetLogging object is added to.

	Type:

	Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

	
remove_empty_rows()

	Remove empty rows from the Dataset.

If the DatasetLogging object was initialized with a shape or a size keyword
argument then the size of the Dataset is always \(\geq\)
to the number of logging records [https://docs.python.org/3/library/logging.html#log-record] that were added to it. Calling this
method will remove the rows in the Dataset that were not
from a logging record [https://docs.python.org/3/library/logging.html#log-record].

	
remove_handler()

	Remove this class’s Handler [https://docs.python.org/3/library/logging.html#logging.Handler] from the associated Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

After calling this method logging records [https://docs.python.org/3/library/logging.html#log-record] are no longer
added to the Dataset.

	
set_logger(logger)

	Add this class’s Handler [https://docs.python.org/3/library/logging.html#logging.Handler] to a Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

	Parameters:

	logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – The Logger [https://docs.python.org/3/library/logging.html#logging.Logger] to add this class’s Handler [https://docs.python.org/3/library/logging.html#logging.Handler] to.

 msl.io.dictionary module

msl.io.dictionary module

An OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] that can be made read only.

	
class msl.io.dictionary.Dictionary(read_only, **kwargs)

	Bases: MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

A dict [https://docs.python.org/3/library/stdtypes.html#dict] that can be made read only.

	Parameters:

	
	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the underlying dict [https://docs.python.org/3/library/stdtypes.html#dict] should be created in read-only mode.

	**kwargs – Key-value pairs that are used to create the underlying dict [https://docs.python.org/3/library/stdtypes.html#dict] object.

	
clear()

	Remove all items from the dictionary.

	
items()

	Return a new view of the dictionary’s items, i.e., (key, value) pairs.

	
keys()

	Return a new view of the dictionary’s keys.

	
property read_only

	Whether the underlying dict [https://docs.python.org/3/library/stdtypes.html#dict] is in read-only mode.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
values()

	Return a new view of the dictionary’s values.

 msl.io.google_api module

msl.io.google_api module

Wrappers around Google APIs:

	Google Drive

	Gmail

	Google Sheets

	
class msl.io.google_api.GDrive(account=None, credentials=None, read_only=True, scopes=None)

	Bases: GoogleAPI

Interact with Google Drive.

Attention

You must follow the instructions in the prerequisites section for setting up the
Drive API [https://developers.google.com/drive/api/quickstart/python#prerequisites]
before you can use this class. It is also useful to be aware of the
refresh token expiration [https://developers.google.com/identity/protocols/oauth2#expiration]
policy.

	Parameters:

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Since a person may have multiple Google accounts, and multiple people
may run the same code, this parameter decides which token to load
to authenticate with the Google API. The value can be any text (or
None [https://docs.python.org/3/library/constants.html#None]) that you want to associate with a particular Google
account, provided that it contains valid characters for a filename.
The value that you chose when you authenticated with your credentials
should be used for all future instances of this class to access that
particular Google account. You can associate a different value with
a Google account at any time (by passing in a different account
value), but you will be asked to authenticate with your credentials
again, or, alternatively, you can rename the token files located in
HOME_DIR to match the new account value.

	credentials (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the client secrets OAuth credential file. This
parameter only needs to be specified the first time that you
authenticate with a particular Google account or if you delete
the token file that was created when you previously authenticated.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to interact with Google Drive in read-only mode.

	scopes (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of scopes to enable for the Google API. See
Drive scopes [https://developers.google.com/identity/protocols/oauth2/scopes#drive]
for more details. If not specified then default scopes are chosen
based on the value of read_only.

	
MIME_TYPE_FOLDER = 'application/vnd.google-apps.folder'

	

	
ROOT_NAMES = ['Google Drive', 'My Drive', 'Drive']

	

	
copy(file_id, folder_id=None, name=None)

	Copy a file.

	Parameters:

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file to copy. Folders cannot be copied.

	folder_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the destination folder. If not specified then creates
a copy in the same folder that the original file is located in.
To copy the file to the My Drive root folder then specify
'root' as the folder_id.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The filename of the destination file.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The ID of the destination file.

	
create_folder(folder, parent_id=None)

	Create a folder.

Makes all intermediate-level folders needed to contain the leaf directory.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – The folder(s) to create, for example, 'folder1' or
'folder1/folder2/folder3'.

	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the parent folder that folder is relative to. If not
specified then folder is relative to the My Drive root folder.
If folder is in a Shared drive then you must specify the
ID of a parent folder.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The ID of the last (right most) folder that was created.

	
delete(file_or_folder_id)

	Delete a file or a folder.

Files that are in read-only mode cannot be deleted.

Danger

Permanently deletes the file or folder owned by the user without
moving it to the trash. If the target is a folder, then all files
and sub-folders contained within the folder (that are owned by the
user) are also permanently deleted.

	Parameters:

	file_or_folder_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the file or folder to delete.

	
download(file_id, save_to=None, num_retries=0, chunk_size=104857600, callback=None)

	Download a file.

	Parameters:

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the file to download.

	save_to (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The location to save the file to. If a directory is specified
then the file will be saved to that directory using the filename
of the remote file. To save the file with a new filename, specify
the new filename in save_to. Default is to save the file to the
current working directory using the remote filename.

	num_retries (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of times to retry the download.
If zero (default) then attempt the request only once.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int], optional) – The file will be downloaded in chunks of this many bytes.

	callback – The callback to call after each chunk of the file is downloaded.
The callback accepts one positional argument, for example:

def handler(file):
 print(file.progress(), file.total_size, file.resumable_progress)

drive.download('0Bwab3C2ejYSdM190b2psXy1C50P', callback=handler)

	
empty_trash()

	Permanently delete all files in the trash.

	
file_id(file, mime_type=None, folder_id=None)

	Get the ID of a Google Drive file.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a Google Drive file.

	mime_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The Drive MIME type [https://developers.google.com/drive/api/guides/mime-types] or Media type [https://www.iana.org/assignments/media-types/media-types.xhtml] to use to filter the results.

	folder_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the folder that file is relative to. If not specified
then file is relative to the My Drive root folder.
If file is in a Shared drive then you must specify the
ID of a parent folder.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The file ID.

	
folder_id(folder, parent_id=None)

	Get the ID of a Google Drive folder.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a Google Drive file.

	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the parent folder that folder is relative to. If not
specified then folder is relative to the My Drive root folder.
If folder is in a Shared drive then you must specify the
ID of a parent folder.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The folder ID.

	
is_file(file, mime_type=None, folder_id=None)

	Check if a file exists.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a Google Drive file.

	mime_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The Drive MIME type [https://developers.google.com/drive/api/guides/mime-types] or Media type [https://www.iana.org/assignments/media-types/media-types.xhtml] to use to filter the results.

	folder_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the folder that file is relative to. If not specified
then file is relative to the My Drive root folder.
If file is in a Shared drive then you must specify the
ID of a parent folder.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the file exists.

	
is_folder(folder, parent_id=None)

	Check if a folder exists.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a Google Drive folder.

	parent_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the parent folder that folder is relative to. If not
specified then folder is relative to the My Drive root folder.
If folder is in a Shared drive then you must specify the
ID of a parent folder.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the folder exists.

	
is_read_only(file_id)

	Returns whether the file is in read-only mode.

	Parameters:

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the file is in read-only mode.

	
move(source_id, destination_id)

	Move a file or a folder.

When moving a file or folder between My Drive and a Shared drive
the access permissions will change.

Moving a file or folder does not change its ID, only the ID of
its parent changes (i.e., source_id will remain the same
after the move).

	Parameters:

	
	source_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file or folder to move.

	destination_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the destination folder. To move the file or folder to the
My Drive root folder then specify 'root' as the destination_id.

	
path(file_or_folder_id)

	Convert an ID to a path.

	Parameters:

	file_or_folder_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file or folder.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The corresponding path of the ID.

	
read_only(file_id, read_only, reason='')

	Set a file to be in read-only mode.

	Parameters:

	
	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to set the file to be in read-only mode.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The reason for putting the file in read-only mode.
Only used if read_only is True [https://docs.python.org/3/library/constants.html#True].

	
rename(file_or_folder_id, new_name)

	Rename a file or folder.

Renaming a file or folder does not change its ID.

	Parameters:

	
	file_or_folder_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a file or folder.

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the file or folder.

	
shared_drives()

	Returns the IDs and names of all Shared drives.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The keys are the IDs of the shared drives and the values are the
names of the shared drives.

	
upload(file, folder_id=None, mime_type=None, resumable=False, chunk_size=104857600)

	Upload a file.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to upload.

	folder_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ID of the folder to upload the file to. If not specified then
uploads to the My Drive root folder.

	mime_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The Drive MIME type [https://developers.google.com/drive/api/guides/mime-types] or Media type [https://www.iana.org/assignments/media-types/media-types.xhtml] of the file
(e.g., 'text/csv'). If not specified then a type will be
guessed based on the file extension.

	resumable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the upload can be resumed.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The file will be uploaded in chunks of this many bytes. Only used
if resumable is True [https://docs.python.org/3/library/constants.html#True]. Pass in a value of -1 if the file
is to be uploaded in a single chunk. Note that Google App Engine
has a 5MB limit on request size, so you should never set
chunk_size to be >5MB or to -1 (if the file size is >5MB).

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The ID of the file that was uploaded.

	
class msl.io.google_api.GMail(account=None, credentials=None, scopes=None)

	Bases: GoogleAPI

Interact with Gmail.

Attention

You must follow the instructions in the prerequisites section for setting up the
Gmail API [https://developers.google.com/gmail/api/quickstart/python#prerequisites]
before you can use this class. It is also useful to be aware of the
refresh token expiration [https://developers.google.com/identity/protocols/oauth2#expiration]
policy.

	Parameters:

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Since a person may have multiple Google accounts, and multiple people
may run the same code, this parameter decides which token to load
to authenticate with the Google API. The value can be any text (or
None [https://docs.python.org/3/library/constants.html#None]) that you want to associate with a particular Google
account, provided that it contains valid characters for a filename.
The value that you chose when you authenticated with your credentials
should be used for all future instances of this class to access that
particular Google account. You can associate a different value with
a Google account at any time (by passing in a different account
value), but you will be asked to authenticate with your credentials
again, or, alternatively, you can rename the token files located in
HOME_DIR to match the new account value.

	credentials (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the client secrets OAuth credential file. This
parameter only needs to be specified the first time that you
authenticate with a particular Google account or if you delete
the token file that was created when you previously authenticated.

	scopes (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of scopes to enable for the Google API. See
Gmail scopes [https://developers.google.com/identity/protocols/oauth2/scopes#gmail]
for more details. If not specified then default scopes are chosen.

	
profile()

	Gets the authenticated user’s Gmail profile.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – Returns the following

{
 'email_address': string, The authenticated user's email address
 'messages_total': integer, The total number of messages in the mailbox
 'threads_total': integer, The total number of threads in the mailbox
 'history_id': string, The ID of the mailbox's current history record
}

	
send(recipients, sender='me', subject=None, body=None)

	Send an email.

	Parameters:

	
	recipients (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The email address(es) of the recipient(s). The value 'me'
can be used to indicate the authenticated user.

	sender (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The email address of the sender. The value 'me'
can be used to indicate the authenticated user.

	subject (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The text to include in the subject field.

	body (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The text to include in the body of the email. The text can be
enclosed in <html></html> tags to use HTML elements to format
the message.

See also

send_email()

	
class msl.io.google_api.GSheets(account=None, credentials=None, read_only=True, scopes=None)

	Bases: GoogleAPI

Interact with Google Sheets.

Attention

You must follow the instructions in the prerequisites section for setting up the
Sheets API [https://developers.google.com/sheets/api/quickstart/python#prerequisites]
before you can use this class. It is also useful to be aware of the
refresh token expiration [https://developers.google.com/identity/protocols/oauth2#expiration]
policy.

	Parameters:

	
	account (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Since a person may have multiple Google accounts, and multiple people
may run the same code, this parameter decides which token to load
to authenticate with the Google API. The value can be any text (or
None [https://docs.python.org/3/library/constants.html#None]) that you want to associate with a particular Google
account, provided that it contains valid characters for a filename.
The value that you chose when you authenticated with your credentials
should be used for all future instances of this class to access that
particular Google account. You can associate a different value with
a Google account at any time (by passing in a different account
value), but you will be asked to authenticate with your credentials
again, or, alternatively, you can rename the token files located in
HOME_DIR to match the new account value.

	credentials (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the client secrets OAuth credential file. This
parameter only needs to be specified the first time that you
authenticate with a particular Google account or if you delete
the token file that was created when you previously authenticated.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to interact with Google Sheets in read-only mode.

	scopes (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The list of scopes to enable for the Google API. See
Sheets scopes [https://developers.google.com/identity/protocols/oauth2/scopes#sheets]
for more details. If not specified then default scopes are chosen
based on the value of read_only.

	
MIME_TYPE = 'application/vnd.google-apps.spreadsheet'

	

	
SERIAL_NUMBER_ORIGIN = datetime.datetime(1899, 12, 30, 0, 0)

	

	
add_sheets(names, spreadsheet_id)

	Add sheets to a spreadsheet.

	Parameters:

	
	names (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The name(s) of the new sheet(s) to add.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the spreadsheet to add the sheet(s) to.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The keys are the IDs of the new sheets and the values are the names.

	
append(values, spreadsheet_id, cell=None, sheet=None, row_major=True, raw=False)

	Append values to a sheet.

	Returns:

	
	values – The value(s) to append

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a Google Sheets file.

	cell (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cell (top-left corner) to start appending the values to. If the
cell already contains data then new rows are inserted and the values
are written to the new rows. For example, 'D100'.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of a sheet in the spreadsheet to append the values to.
If not specified and only one sheet exists in the spreadsheet
then automatically determines the sheet name; however, it is
more efficient to specify the name of the sheet.

	row_major (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to append the values in row-major or column-major order.

	raw (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Determines how the values should be interpreted. If True [https://docs.python.org/3/library/constants.html#True],
the values will not be parsed and will be stored as-is. If
False [https://docs.python.org/3/library/constants.html#False], the values will be parsed as if the user typed
them into the UI. Numbers will stay as numbers, but strings may
be converted to numbers, dates, etc. following the same rules
that are applied when entering text into a cell via the Google
Sheets UI.

	
cells(spreadsheet_id, ranges=None)

	Return cells from a spreadsheet.

	Parameters:

	
	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a Google Sheets file.

	ranges (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The ranges to retrieve from the spreadsheet. Examples:

	'Sheet1' \(\rightarrow\) return all cells from
the sheet named Sheet1

	'Sheet1!A1:H5' \(\rightarrow\) return cells A1:H5
from the sheet named Sheet1

	['Sheet1!A1:H5', 'Data', 'Devices!B4:B9'] \(\rightarrow\)
return cells A1:H5 from the sheet named Sheet1, all cells from the
sheet named Data and cells B4:B9 from the sheet named Devices

If not specified then return all cells from all sheets.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The cells from the spreadsheet. The keys are the names of the
sheets and the values are a list [https://docs.python.org/3/library/stdtypes.html#list] of GCell
objects for the specified range of each sheet.

	
copy(name_or_id, spreadsheet_id, destination_spreadsheet_id)

	Copy a sheet from one spreadsheet to another spreadsheet.

	Parameters:

	
	name_or_id (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The name or ID of the sheet to copy.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the spreadsheet that contains the sheet.

	destination_spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a spreadsheet to copy the sheet to.

	Returns:

	int [https://docs.python.org/3/library/functions.html#int] – The ID of the sheet in the destination spreadsheet.

	
create(name, sheet_names=None)

	Create a new spreadsheet.

The spreadsheet will be created in the My Drive root folder.
To move it to a different folder use GDrive.create_folder()
and/or GDrive.move().

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the spreadsheet.

	sheet_names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The names of the sheets that are in the spreadsheet.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The ID of the spreadsheet that was created.

	
delete_sheets(names_or_ids, spreadsheet_id)

	Delete sheets from a spreadsheet.

	Parameters:

	
	names_or_ids (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The name(s) or ID(s) of the sheet(s) to delete.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the spreadsheet to delete the sheet(s) from.

	
rename_sheet(name_or_id, new_name, spreadsheet_id)

	Rename a sheet.

	Parameters:

	
	name_or_id (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – The name or ID of the sheet to rename.

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the sheet.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the spreadsheet that contains the sheet.

	
sheet_id(name, spreadsheet_id)

	Returns the ID of a sheet.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the sheet.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the spreadsheet.

	Returns:

	int [https://docs.python.org/3/library/functions.html#int] – The ID of the sheet.

	
sheet_names(spreadsheet_id)

	Get the names of all sheets in a spreadsheet.

	Parameters:

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a Google Sheets file.

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of all sheets.

	
static to_datetime(value)

	Convert a “serial number” date into a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime].

	Parameters:

	value (float [https://docs.python.org/3/library/functions.html#float]) – A date in the “serial number” format.

	Returns:

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] – The date converted.

	
values(spreadsheet_id, sheet=None, cells=None, row_major=True, value_option=GValueOption.FORMATTED, datetime_option=GDateTimeOption.SERIAL_NUMBER)

	Return a range of values from a spreadsheet.

	Parameters:

	
	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a Google Sheets file.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of a sheet in the spreadsheet to read the values from.
If not specified and only one sheet exists in the spreadsheet
then automatically determines the sheet name; however, it is
more efficient to specify the name of the sheet.

	cells (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The A1 notation or R1C1 notation of the range to retrieve values
from. If not specified then returns all values that are in sheet.

	row_major (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return the values in row-major or column-major order.

	value_option (str [https://docs.python.org/3/library/stdtypes.html#str] or GValueOption, optional) – How values should be represented in the output. If a string
then it must be equal to one of the values in GValueOption.

	datetime_option (str [https://docs.python.org/3/library/stdtypes.html#str] or GDateTimeOption, optional) – How dates, times, and durations should be represented in the
output. If a string then it must be equal to one of the values
in GDateTimeOption. This argument is ignored if
value_option is GValueOption.FORMATTED.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] – The values from the sheet.

	
write(values, spreadsheet_id, cell, sheet=None, row_major=True, raw=False)

	Write values to a sheet.

If a cell that is being written to already contains a value,
the value in that cell is overwritten with the new value.

	Returns:

	
	values – The value(s) to write.

	spreadsheet_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of a Google Sheets file.

	cell (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cell (top-left corner) to start writing the values to.
For example, 'C9'.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of a sheet in the spreadsheet to write the values to.
If not specified and only one sheet exists in the spreadsheet
then automatically determines the sheet name; however, it is
more efficient to specify the name of the sheet.

	row_major (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to write the values in row-major or column-major order.

	raw (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Determines how the values should be interpreted. If True [https://docs.python.org/3/library/constants.html#True],
the values will not be parsed and will be stored as-is. If
False [https://docs.python.org/3/library/constants.html#False], the values will be parsed as if the user typed
them into the UI. Numbers will stay as numbers, but strings may
be converted to numbers, dates, etc. following the same rules
that are applied when entering text into a cell via the Google
Sheets UI.

	
class msl.io.google_api.GoogleAPI(service, version, credentials, scopes, read_only, account)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all Google APIs.

	
close()

	Close the connection to the API service.

	
property service

	The Resource object with methods for interacting with the API service.

	
class msl.io.google_api.GValueOption(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Determines how values should be returned.

	
FORMATTED = 'FORMATTED_VALUE'

	Values will be calculated and formatted in the reply according to the
cell’s formatting. Formatting is based on the spreadsheet’s locale, not
the requesting user’s locale. For example, if A1 is 1.23 and A2 is =A1
and formatted as currency, then A2 would return “$1.23”.

	
FORMULA = 'FORMULA'

	Values will not be calculated. The reply will include the formulas.
For example, if A1 is 1.23 and A2 is =A1 and formatted as currency,
then A2 would return “=A1”.

	
UNFORMATTED = 'UNFORMATTED_VALUE'

	Values will be calculated, but not formatted in the reply.
For example, if A1 is 1.23 and A2 is =A1 and formatted as currency, then
A2 would return the number 1.23.

	
class msl.io.google_api.GDateTimeOption(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Determines how dates should be returned.

	
FORMATTED_STRING = 'FORMATTED_STRING'

	Instructs date, time, datetime, and duration fields to be output as
strings in their given number format (which is dependent on the
spreadsheet locale).

	
SERIAL_NUMBER = 'SERIAL_NUMBER'

	Instructs date, time, datetime, and duration fields to be output as
doubles in “serial number” format, as popularized by Lotus 1-2-3. The
whole number portion of the value (left of the decimal) counts the days
since December 30th 1899. The fractional portion (right of the decimal)
counts the time as a fraction of the day. For example, January 1st 1900
at noon would be 2.5, 2 because it’s 2 days after December 30st 1899,
and .5 because noon is half a day. February 1st 1900 at 3pm would be
33.625. This correctly treats the year 1900 as not a leap year.

	
class msl.io.google_api.GCellType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

The data type of a spreadsheet cell.

	
BOOLEAN = 'BOOLEAN'

	

	
CURRENCY = 'CURRENCY'

	

	
DATE = 'DATE'

	

	
DATE_TIME = 'DATE_TIME'

	

	
EMPTY = 'EMPTY'

	

	
ERROR = 'ERROR'

	

	
NUMBER = 'NUMBER'

	

	
PERCENT = 'PERCENT'

	

	
SCIENTIFIC = 'SCIENTIFIC'

	

	
STRING = 'STRING'

	

	
TIME = 'TIME'

	

	
UNKNOWN = 'UNKNOWN'

	

	
class msl.io.google_api.GCell(value, type, formatted)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

The information about a Google Sheets cell.

	
value

	The value of the cell.

	
type

	GCellType: The data type of value.

	
formatted

	str [https://docs.python.org/3/library/stdtypes.html#str]: The formatted value (i.e., how the value is displayed in the cell).

 msl.io.group module

msl.io.group module

A Group can contain sub-Groups and/or Datasets.

	
class msl.io.group.Group(name, parent, read_only, **metadata)

	Bases: Vertex

A Group can contain sub-Groups and/or Datasets.

Do not instantiate directly. Create a new Group using
create_group().

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this Group. Uses a naming convention analogous to UNIX
file systems where each Group can be thought
of as a directory and where every subdirectory is separated from its
parent directory by the '/' character.

	parent (Group) – The parent Group to this Group.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the Group is to be accessed in read-only mode.

	**metadata – Key-value pairs that are used to create the Metadata
for this Group.

	
add_dataset(name, dataset)

	Add a Dataset.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new Dataset to add.

	dataset (Dataset) – The Dataset to add. The Dataset
and the Metadata are copied.

	
add_dataset_logging(name, dataset_logging)

	Add a DatasetLogging.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new DatasetLogging to add.

	dataset_logging (DatasetLogging) – The DatasetLogging to add. The
DatasetLogging and the
Metadata are copied.

	
add_group(name, group)

	Add a Group.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new Group to add.

	group (Group) – The Group to add. The Datasets and
Metadata that are contained within the
group will be copied.

	
ancestors()

	Get all ancestor (parent) Groups of this Group.

	Yields:

	Group – The ancestors of this Group.

	
create_dataset(name, read_only=None, **kwargs)

	Create a new Dataset.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new Dataset.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to create this Dataset in read-only mode.
If None [https://docs.python.org/3/library/constants.html#None] then uses the mode for this Group.

	**kwargs – Key-value pairs that are passed to Dataset.

	Returns:

	Dataset – The new Dataset that was created.

	
create_dataset_logging(name, level='INFO', attributes=None, logger=None, date_fmt=None, **kwargs)

	Create a Dataset that handles logging [https://docs.python.org/3/library/logging.html#module-logging] records.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name to associate with the Dataset.

	level (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The logging level [https://docs.python.org/3/library/logging.html#levels] to use.

	attributes (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The attribute names [https://docs.python.org/3/library/logging.html#logrecord-attributes] to include in the
Dataset for each logging record [https://docs.python.org/3/library/logging.html#log-record].
If None [https://docs.python.org/3/library/constants.html#None] then uses asctime, levelname, name, and message.

	logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger], optional) – The Logger [https://docs.python.org/3/library/logging.html#logging.Logger] that the DatasetLogging object
will be added to. If None [https://docs.python.org/3/library/constants.html#None] then it is added to the root Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

	date_fmt (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] format code [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior]
to use to represent the asctime attribute [https://docs.python.org/3/library/logging.html#logrecord-attributes] in.
If None [https://docs.python.org/3/library/constants.html#None] then uses the ISO 8601 format '%Y-%m-%dT%H:%M:%S.%f'.

	**kwargs – Additional keyword arguments are passed to Dataset.
The default behaviour is to append every logging record [https://docs.python.org/3/library/logging.html#log-record]
to the Dataset. This guarantees that the size of the
Dataset is equal to the number of
logging records [https://docs.python.org/3/library/logging.html#log-record] that were added to it. However, this behaviour
can decrease the performance if many logging records [https://docs.python.org/3/library/logging.html#log-record] are
added often because a copy of the data in the Dataset is
created for each logging record [https://docs.python.org/3/library/logging.html#log-record] that is added. You can improve
the performance by specifying an initial size of the Dataset
by including a shape or a size keyword argument. This will also automatically
create additional empty rows in the Dataset, that is
proportional to the size of the Dataset, if the size of the
Dataset needs to be increased. If you do this then you will
want to call remove_empty_rows() before
writing DatasetLogging to a file or interacting
with the data in DatasetLogging to remove the
extra rows that were created.

	Returns:

	DatasetLogging – The DatasetLogging that was created.

Examples

>>> import logging
>>> from msl.io import JSONWriter
>>> logger = logging.getLogger('my_logger')
>>> root = JSONWriter()
>>> log_dset = root.create_dataset_logging('log')
>>> logger.info('hi')
>>> logger.error('cannot do that!')
>>> log_dset.data
array([(..., 'INFO', 'my_logger', 'hi'), (..., 'ERROR', 'my_logger', 'cannot do that!')],
 dtype=[('asctime', 'O'), ('levelname', 'O'), ('name', 'O'), ('message', 'O')])

Get all ERROR logging records [https://docs.python.org/3/library/logging.html#log-record]

>>> errors = log_dset[log_dset['levelname'] == 'ERROR']
>>> print(errors)
[(..., 'ERROR', 'my_logger', 'cannot do that!')]

Stop the DatasetLogging object
from receiving logging records [https://docs.python.org/3/library/logging.html#log-record]

>>> log_dset.remove_handler()

	
create_group(name, read_only=None, **metadata)

	Create a new Group.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the new Group.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to create this Group in read-only mode.
If None [https://docs.python.org/3/library/constants.html#None] then uses the mode for this Group.

	**metadata – Key-value pairs that are used to create the Metadata
for this Group.

	Returns:

	Group – The new Group that was created.

	
datasets(exclude=None, include=None, flags=0)

	Get the Datasets in this Group.

	Parameters:

	
	exclude (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A regex pattern to use to exclude Datasets.
The re.search() [https://docs.python.org/3/library/re.html#re.search] function is used to compare the exclude regex
pattern with the name of each Dataset. If
there is a match, the Dataset is not yielded.

	include (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A regex pattern to use to include Datasets.
The re.search() [https://docs.python.org/3/library/re.html#re.search] function is used to compare the include regex
pattern with the name of each Dataset. If
there is a match, the Dataset is yielded.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Regex flags that are passed to re.compile() [https://docs.python.org/3/library/re.html#re.compile].

	Yields:

	Dataset – The filtered Datasets based on the
exclude and include regex patterns. The exclude pattern
has more precedence than the include pattern if there is a
conflict.

	
descendants()

	Get all descendant (children) Groups of this Group.

	Yields:

	Group – The descendants of this Group.

	
groups(exclude=None, include=None, flags=0)

	Get the sub-Groups of this Group.

	Parameters:

	
	exclude (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A regex pattern to use to exclude Groups. The
re.search() [https://docs.python.org/3/library/re.html#re.search] function is used to compare the exclude regex
pattern with the name of each Group. If there is a match,
the Group is not yielded.

	include (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A regex pattern to use to include Groups. The
re.search() [https://docs.python.org/3/library/re.html#re.search] function is used to compare the include regex
pattern with the name of each Group. If there is a match,
the Group is yielded.

	flags (int [https://docs.python.org/3/library/functions.html#int], optional) – Regex flags that are passed to re.compile() [https://docs.python.org/3/library/re.html#re.compile].

	Yields:

	Group – The filtered Groups based on the exclude and include
regex patterns. The exclude pattern has more precedence than the
include pattern if there is a conflict.

	
static is_dataset(obj)

	Test whether an object is a Dataset.

	Parameters:

	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to test.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether obj is an instance of Dataset.

	
static is_dataset_logging(obj)

	Test whether an object is a DatasetLogging.

	Parameters:

	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to test.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether obj is an instance of DatasetLogging.

	
static is_group(obj)

	Test whether an object is a Group.

	Parameters:

	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to test.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether obj is an instance of Group.

	
remove(name)

	Remove a Group or a Dataset.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Group or Dataset to remove.

	Returns:

	Group, Dataset or None [https://docs.python.org/3/library/constants.html#None] – The Group or Dataset that was
removed or None [https://docs.python.org/3/library/constants.html#None] if there was no Group or
Dataset with the specified name.

	
require_dataset(name, read_only=None, **kwargs)

	Require that a Dataset exists.

If the Dataset exists then it will be returned
if it does not exist then it is created.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Dataset.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to create this Dataset in read-only mode.
If None [https://docs.python.org/3/library/constants.html#None] then uses the mode for this Group.

	**kwargs – Key-value pairs that are passed to Dataset.

	Returns:

	Dataset – The Dataset that was created or that already existed.

	
require_dataset_logging(name, level='INFO', attributes=None, logger=None, date_fmt=None, **kwargs)

	Require that a Dataset exists for handling logging [https://docs.python.org/3/library/logging.html#module-logging] records.

If the DatasetLogging exists then it will be returned
if it does not exist then it is created.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – A name to associate with the Dataset.

	level (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The logging level [https://docs.python.org/3/library/logging.html#levels] to use.

	attributes (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The attribute names [https://docs.python.org/3/library/logging.html#logrecord-attributes] to include in the
Dataset for each logging record [https://docs.python.org/3/library/logging.html#log-record].
If the Dataset exists and if attributes
are specified, and they do not match those of the existing
Dataset, then a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.
If None [https://docs.python.org/3/library/constants.html#None] and the Dataset does not exist
then uses asctime, levelname, name, and message.

	logger (Logger [https://docs.python.org/3/library/logging.html#logging.Logger], optional) – The Logger [https://docs.python.org/3/library/logging.html#logging.Logger] that the DatasetLogging object
will be added to. If None [https://docs.python.org/3/library/constants.html#None] then it is added to the root Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

	date_fmt (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] format code [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior]
to use to represent the asctime attribute [https://docs.python.org/3/library/logging.html#logrecord-attributes] in.
If None [https://docs.python.org/3/library/constants.html#None] then uses the ISO 8601 format '%Y-%m-%dT%H:%M:%S.%f'.

	**kwargs – Additional keyword arguments are passed to Dataset.
The default behaviour is to append every logging record [https://docs.python.org/3/library/logging.html#log-record]
to the Dataset. This guarantees that the size of the
Dataset is equal to the number of
logging records [https://docs.python.org/3/library/logging.html#log-record] that were added to it. However, this behaviour
can decrease the performance if many logging records [https://docs.python.org/3/library/logging.html#log-record] are
added often because a copy of the data in the Dataset is
created for each logging record [https://docs.python.org/3/library/logging.html#log-record] that is added. You can improve
the performance by specifying an initial size of the Dataset
by including a shape or a size keyword argument. This will also automatically
create additional empty rows in the Dataset, that is
proportional to the size of the Dataset, if the size of the
Dataset needs to be increased. If you do this then you will
want to call remove_empty_rows() before
writing DatasetLogging to a file or interacting
with the data in DatasetLogging to remove the
extra rows that were created.

	Returns:

	DatasetLogging – The DatasetLogging that was created or
that already existed.

	
require_group(name, read_only=None, **metadata)

	Require that a Group exists.

If the Group exists then it will be returned if it does not exist
then it is created.

Automatically creates the ancestor Groups if they do not exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Group.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return the Group in read-only mode.
If None [https://docs.python.org/3/library/constants.html#None] then uses the mode for this Group.

	**metadata – Key-value pairs that are used as Metadata
for this Group.

	Returns:

	Group – The Group that was created or that already existed.

 msl.io.metadata module

msl.io.metadata module

Provides information about other data.

	
class msl.io.metadata.Metadata(read_only, vertex_name, **kwargs)

	Bases: Dictionary

Provides information about other data.

Do not instantiate directly. A Metadata object is created automatically
when create_dataset() or create_group()
is called.

	Parameters:

	
	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether Metadata is to be accessed in read-only mode.

	vertex_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Vertex that Metadata is associated with.

	**kwargs – Key-value pairs that will be used to create the Dictionary.

	
copy(read_only=None)

	Create a copy of the Metadata.

	Parameters:

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the copy should be created in read-only mode. If None [https://docs.python.org/3/library/constants.html#None] then
creates a copy using the mode for the Metadata that is being copied.

	Returns:

	Metadata – A copy of the Metadata.

	
fromkeys(seq, value=None, read_only=None)

	Create a new Metadata object with keys from seq and values set to value.

	Parameters:

	
	seq – Any iterable object that contains the names of the keys.

	value (object [https://docs.python.org/3/library/functions.html#object], optional) – The default value to use for each key.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the returned object should be created in read-only mode. If
None [https://docs.python.org/3/library/constants.html#None] then uses the mode for the Metadata that is used
to call this method.

	Returns:

	Metadata – A new Metadata object.

 msl.io.tables module

msl.io.tables module

Read a data table from a file.

	
msl.io.tables.extension_delimiter_map = {'.csv': ','}

	The delimiter to use to separate columns in a table based on the file extension.

If the delimiter is not specified when calling the read_table() function then this
extension-delimiter map is used to determine the value of the delimiter. If the file extension
is not in the map then the value of the delimiter is None [https://docs.python.org/3/library/constants.html#None] (i.e., split columns by any
whitespace).

Examples

You can customize your own map by adding key-value pairs

>>> from msl.io import extension_delimiter_map
>>> extension_delimiter_map['.txt'] = '\t'

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
msl.io.tables.read_table_excel(file, cells=None, sheet=None, as_datetime=True, dtype=None, **kwargs)

	Read a data table from an Excel spreadsheet.

A table has the following properties:

	The first row is a header.

	All rows have the same number of columns.

	All data values in a column have the same data type.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	cells (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cells to read. For example, C9 will start at cell C9 and
include all values until the end of the spreadsheet, A:C includes
all rows in columns A, B and C, and, C9:G20 includes
values from only the specified cells. If not specified then returns
all values from the specified sheet.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the sheet to read the data from. If there is only one sheet
in the workbook then you do not need to specify the name of the sheet.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether dates should be returned as datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or
date [https://docs.python.org/3/library/datetime.html#datetime.date] objects. If False [https://docs.python.org/3/library/constants.html#False] then dates are returned
as a str [https://docs.python.org/3/library/stdtypes.html#str].

	dtype (object [https://docs.python.org/3/library/functions.html#object], optional) – If specified then it must be able to be converted to a dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object.

	**kwargs – All additional keyword arguments are passed to open_workbook() [https://xlrd.readthedocs.io/en/stable/api.html#xlrd.open_workbook]. Can use
an encoding keyword argument as an alias for encoding_override.

	Returns:

	Dataset – The table as a Dataset. The header is included
in the Metadata.

	
msl.io.tables.read_table_gsheets(file, cells=None, sheet=None, as_datetime=True, dtype=None, **kwargs)

	Read a data table from a Google Sheets spreadsheet.

Attention

You must have already performed the instructions specified in
GDrive and in GSheets to be able to use this function.

A table has the following properties:

	The first row is a header.

	All rows have the same number of columns.

	All data values in a column have the same data type.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read. Can be the ID of a Google Sheets spreadsheet.

	cells (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cells to read. For example, C9 will start at cell C9 and
include all values until the end of the spreadsheet, A:C includes
all rows in columns A, B and C, and, C9:G20 includes
values from only the specified cells. If not specified then returns
all values from the specified sheet.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the sheet to read the data from. If there is only one sheet
in the spreadsheet then you do not need to specify the name of the sheet.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether dates should be returned as datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or
date [https://docs.python.org/3/library/datetime.html#datetime.date] objects. If False [https://docs.python.org/3/library/constants.html#False] then dates are returned
as a str [https://docs.python.org/3/library/stdtypes.html#str].

	dtype (object [https://docs.python.org/3/library/functions.html#object], optional) – If specified then it must be able to be converted to a dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] object.

	**kwargs – All additional keyword arguments are passed to GSheetsReader.

	Returns:

	Dataset – The table as a Dataset. The header is included
in the Metadata.

	
msl.io.tables.read_table_text(file, **kwargs)

	Read a data table from a text-based file.

A table has the following properties:

	The first row is a header.

	All rows have the same number of columns.

	All data values in a column have the same data type.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	**kwargs – All keyword arguments are passed to loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt]. If the
delimiter is not specified and the file has csv as the file
extension then the delimiter is automatically set to be ','.

	Returns:

	Dataset – The table as a Dataset. The header is included
in the Metadata.

 msl.io.utils module

msl.io.utils module

General functions.

	
msl.io.utils.checksum(file, algorithm='sha256', chunk_size=65536, shake_length=256)

	Get the checksum of a file.

A checksum is a sequence of numbers and letters that act as a fingerprint
for a file against which later comparisons can be made to detect errors or
changes in the file. It can be used to verify the integrity of the data.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file [https://docs.python.org/3/glossary.html#term-file-object] object) – A file to get the checksum of.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The hash algorithm to use to compute the checksum.
See hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib] for more details.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of bytes to read at a time from the file. It is useful
to tweak this parameter when reading a large file to improve performance.

	shake_length (int [https://docs.python.org/3/library/functions.html#int], optional) – The digest length to use for the SHAKE algorithm. See
hashlib.shake.hexdigest() [https://docs.python.org/3/library/hashlib.html#hashlib.shake.hexdigest] for more details.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The checksum containing only hexadecimal digits.

	
msl.io.utils.copy(source, destination, overwrite=False, include_metadata=True)

	Copy a file.

	Parameters:

	
	source (path-like object [https://docs.python.org/3/glossary.html#term-path-like-object]) – The path to a file to copy.

	destination (path-like object [https://docs.python.org/3/glossary.html#term-path-like-object]) – A directory to copy the file to or a full path (i.e., includes the basename).
If the directory does not exist then it, and all intermediate directories,
will be created.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite the destination file if it already exists.
If destination already exists and overwrite is False [https://docs.python.org/3/library/constants.html#False] then a
FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] is raised.

	include_metadata (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to also copy information such as the file permissions,
the latest access time and latest modification time with the file.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The path to where the file was copied.

	
msl.io.utils.get_basename(obj)

	Get the basename() [https://docs.python.org/3/library/os.path.html#os.path.basename] of a file.

	Parameters:

	obj (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The object to get the basename() [https://docs.python.org/3/library/os.path.html#os.path.basename] of. If the object does not
support the basename() [https://docs.python.org/3/library/os.path.html#os.path.basename] function then the
__name__ [https://docs.python.org/3/library/stdtypes.html#definition.__name__] of the obj is returned.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The basename of obj.

	
msl.io.utils.git_head(directory)

	Get information about the HEAD of a repository.

This function requires that git [https://git-scm.com/] is installed
and that it is available on PATH.

	Parameters:

	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – A directory that is under version control.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None] – Information about the most recent commit on the current branch.
If directory is not a directory that is under version control
then returns None [https://docs.python.org/3/library/constants.html#None].

	
msl.io.utils.is_admin()

	Check if the current process is being run as an administrator.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the current process is being run as an administrator.

	
msl.io.utils.is_dir_accessible(path, strict=False)

	Check if a directory exists and is accessible.

An accessible directory is one that the user has
permission to access.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to check.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise the exception (if one occurs).

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the directory exists and is accessible.

	
msl.io.utils.is_file_readable(file, strict=False)

	Check if a file exists and is readable.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to check.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise the exception (if one occurs).

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the file exists and is readable.

	
msl.io.utils.register(reader_class)

	Use as a decorator to register a Reader subclass.

See Create a New Reader for an example on how to use @register decorator.

	Parameters:

	reader_class (Reader) – A Reader subclass.

	Returns:

	Reader – The Reader.

	
msl.io.utils.remove_write_permissions(path)

	Remove all write permissions of a file.

On Windows, this function will set the file attribute to be read only.

On linux and macOS, write permission is removed for the User,
Group and Others. The read and execute permissions are preserved.

	Parameters:

	path (path-like object [https://docs.python.org/3/glossary.html#term-path-like-object]) – The path to remove the write permissions of.

	
msl.io.utils.run_as_admin(args=None, executable=None, cwd=None, capture_stderr=False, blocking=True, show=False, **kwargs)

	Run a process as an administrator and return its output.

	Parameters:

	
	args (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A sequence of program arguments or else a single string. Providing a
sequence of arguments is generally preferred, as it allows the module
to take care of any required escaping and quoting of arguments
(e.g., to permit spaces in file names).

	executable (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The executable to pass the args to.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The working directory for the elevated process.

	capture_stderr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to send the stderr stream to stdout.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to wait for the process to finish before returning to the
calling program.

	show (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show the elevated console (Windows only). If
True [https://docs.python.org/3/library/constants.html#True] then the stdout stream of the process is not captured.

	kwargs – If the current process already has admin privileges or if the operating
system is not Windows then all additional keyword arguments are passed
to check_output() [https://docs.python.org/3/library/subprocess.html#subprocess.check_output]. Otherwise, only a timeout keyword
argument is used (Windows).

	Returns:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes], int [https://docs.python.org/3/library/functions.html#int] or Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] – The returned object depends on whether the process is executed in blocking
or non-blocking mode. If blocking then bytes [https://docs.python.org/3/library/stdtypes.html#bytes] are returned (the
stdout stream of the process). If non-blocking, then the returned object
will either be the Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] instance that is running the
process (POSIX) or an int [https://docs.python.org/3/library/functions.html#int] which is the process ID (Windows).

Examples

Import the modules

>>> import sys
>>> from msl.io import run_as_admin

Run a shell script

>>> run_as_admin(['./script.sh', '--message', 'hello world'])

Run a Python script

>>> run_as_admin([sys.executable, 'script.py', '--verbose'], cwd='D:\\My Scripts')

Create a service in the Windows registry and in the Service Control Manager database

>>> run_as_admin(['sc', 'create', 'MyLogger', 'binPath=', 'C:\\logger.exe', 'start=', 'auto'])

	
msl.io.utils.search(folder, pattern=None, levels=0, regex_flags=0, exclude_folders=None, ignore_permission_error=True, ignore_hidden_folders=True, follow_symlinks=False)

	Search for files starting from a root folder.

	Parameters:

	
	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – The root folder to begin searching for files.

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A regex string to use to filter the filenames. If None [https://docs.python.org/3/library/constants.html#None] then no
filtering is applied and all files are yielded. Examples:

	r'data' \(\rightarrow\) find all files with the word data
in the filename

	r'\.png$' \(\rightarrow\) find all files with the extension .png

	r'\.jpe*g$' \(\rightarrow\) find all files with the extension
.jpeg or .jpg

	levels (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of sub-folder levels to recursively search for files.
If None [https://docs.python.org/3/library/constants.html#None] then search all sub-folders.

	regex_flags (int [https://docs.python.org/3/library/functions.html#int], optional) – The flags to use to compile regex strings.

	exclude_folders (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The pattern of folder names to exclude from the search. Can be a regex
string. If None [https://docs.python.org/3/library/constants.html#None] then include all folders in the search. Examples:

	r'bin' \(\rightarrow\) exclude all folders that contain the word bin

	r'^My' \(\rightarrow\) exclude all folders that start with the letters My

	[r'bin', r'^My'] which is equivalent to r'(bin|^My') \(\rightarrow\) exclude
all folders that contain the word bin or start with the letters My

	ignore_permission_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore PermissionError [https://docs.python.org/3/library/exceptions.html#PermissionError] exceptions when reading
the items within a folder.

	ignore_hidden_folders (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore hidden folders from the search. A hidden folder
starts with a . (a dot).

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to search for files by following symbolic links.

	Yields:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The path to a file.

	
msl.io.utils.send_email(config, recipients, sender=None, subject=None, body=None)

	Send an email.

	Parameters:

	
	config – A path-like object [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like object [https://docs.python.org/3/glossary.html#term-file-like-object] of an INI-style
configuration file that contains information on how to send an email.
There are two ways to send an email – Gmail API or SMTP server.

An example INI file to use the Gmail API is the following (see
GMail for more details). Although all
key-value pairs are optional, a [gmail] section must exist to use
the Gmail API.

[gmail]
account = work [default: None]
credentials = path/to/client_secrets.json [default: None]
scopes = [default: None]
 https://www.googleapis.com/auth/gmail.send
 https://www.googleapis.com/auth/gmail.metadata
domain = @gmail.com [default: None]

An example INI file for an SMTP server is the following. Only the host
and port key-value pairs are required.

[smtp]
host = hostname or IP address of the SMTP server
port = port number to connect to on the SMTP server
starttls = true|yes|1|on -or- false|no|0|off [default: false]
username = the username to authenticate with [default: None]
password = the password for username [default: None]
domain = @company.com [default: None]

Warning

Since this information is specified in plain text in the configuration
file, you should set the file permissions provided by your operating
system to ensure that your authentication credentials are safe.

	recipients (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The email address(es) of the recipient(s). Can omit the @domain.com
part if a domain key is specified in the config file. Can be the
value 'me' if sending an email to yourself via Gmail.

	sender (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The email address of the sender. Can omit the @domain.com part
if a domain key is specified in the config file. If not
specified then it equals the value of the first recipient if using
SMTP or the value 'me' if using Gmail.

	subject (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The text to include in the subject field.

	body (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The text to include in the body of the email. The text can be
enclosed in <html></html> tags to use HTML elements to format
the message.

 msl.io.vertex module

msl.io.vertex module

A vertex in a tree [https://en.wikipedia.org/wiki/Tree_(graph_theory)].

	
class msl.io.vertex.Vertex(name, parent, read_only, **metadata)

	Bases: Dictionary

A vertex in a tree [https://en.wikipedia.org/wiki/Tree_(graph_theory)].

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this vertex.

	parent (Group) – The parent of this vertex.

	read_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this vertex is in read-only mode.

	**metadata – Key-value pairs that are used to create the Metadata
for this Vertex.

	
add_metadata(**metadata)

	Add key-value pairs to the Metadata for this Vertex.

	
property metadata

	The metadata associated with this Vertex.

	Type:

	Metadata

	
property name

	The name of this Vertex.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property parent

	The parent of this Vertex.

	Type:

	Group

	
property read_only

	Whether this Vertex is in read-only mode.

Setting this value will also update all sub-Groups
and sub-Datasets to be in the same mode.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

 msl.io.readers package

msl.io.readers package

Submodules

	msl.io.readers.detector_responsivity_system module
	DRSReader
	DRSReader.can_read()

	DRSReader.read()

	msl.io.readers.excel module
	ExcelReader
	ExcelReader.close()

	ExcelReader.read()

	ExcelReader.sheet_names()

	ExcelReader.workbook

	msl.io.readers.gsheets module
	GSheetsReader
	GSheetsReader.read()

	GSheetsReader.sheet_names()

	msl.io.readers.hdf5 module
	HDF5Reader
	HDF5Reader.can_read()

	HDF5Reader.read()

	msl.io.readers.json_ module
	JSONReader
	JSONReader.can_read()

	JSONReader.read()

	msl.io.readers.spreadsheet module
	Spreadsheet
	Spreadsheet.file

	Spreadsheet.read()

	Spreadsheet.sheet_names()

	Spreadsheet.to_indices()

	Spreadsheet.to_letters()

	Spreadsheet.to_slices()

 msl.io.readers.detector_responsivity_system module

msl.io.readers.detector_responsivity_system module

Reader for the Detector Responsivity System from Light Standards at MSL.

	
class msl.io.readers.detector_responsivity_system.DRSReader(file)

	Bases: Reader

Reader for the Detector Responsivity System from Light Standards at MSL.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	Checks if the first line starts with DRS and ends with Shindo.

	
read(**kwargs)

	Reads the .DAT and corresponding .LOG file.

	Parameters:

	**kwargs – All key-value pairs are ignored.

 msl.io.readers.excel module

msl.io.readers.excel module

Read an Excel spreadsheet (.xls and .xlsx).

	
class msl.io.readers.excel.ExcelReader(file, **kwargs)

	Bases: Spreadsheet

Read an Excel spreadsheet (.xls and .xlsx).

This class simply provides a convenience for reading information
from Excel spreadsheets. It is not registered as a Reader
because the information in an Excel spreadsheet is unstructured and therefore
one cannot generalize how to parse an Excel spreadsheet to create a
Root.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of an Excel spreadsheet on a local hard drive or on a network.

	**kwargs – All keyword arguments are passed to open_workbook() [https://xlrd.readthedocs.io/en/stable/api.html#xlrd.open_workbook]. Can use
an encoding keyword argument as an alias for encoding_override. The
default on_demand value is True [https://docs.python.org/3/library/constants.html#True].

Examples

>>> from msl.io import ExcelReader
>>> excel = ExcelReader('lab_environment.xlsx')

	
close()

	Calls release_resources() [https://xlrd.readthedocs.io/en/stable/api.html#xlrd.book.Book.release_resources].

	
read(cell=None, sheet=None, as_datetime=True)

	Read values from the Excel spreadsheet.

	Parameters:

	
	cell (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cell(s) to read. For example, C9 will return a single value
and C9:G20 will return all values in the specified range. If not
specified then returns all values in the specified sheet.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the sheet to read the value(s) from. If there is only
one sheet in the spreadsheet then you do not need to specify the name
of the sheet.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether dates should be returned as datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or
date [https://docs.python.org/3/library/datetime.html#datetime.date] objects. If False [https://docs.python.org/3/library/constants.html#False] then dates are
returned as an ISO 8601 string.

	Returns:

	The value(s) of the requested cell(s).

Examples

>>> excel.read()
[('temperature', 'humidity'), (20.33, 49.82), (20.23, 46.06), (20.41, 47.06), (20.29, 48.32)]
>>> excel.read('B2')
49.82
>>> excel.read('A:A')
[('temperature',), (20.33,), (20.23,), (20.41,), (20.29,)]
>>> excel.read('A1:B1')
[('temperature', 'humidity')]
>>> excel.read('A2:B4')
[(20.33, 49.82), (20.23, 46.06), (20.41, 47.06)]

	
sheet_names()

	Get the names of all sheets in the Excel spreadsheet.

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of all sheets.

	
property workbook

	The workbook instance.

	Type:

	Book [https://xlrd.readthedocs.io/en/stable/api.html#xlrd.book.Book]

 msl.io.readers.gsheets module

msl.io.readers.gsheets module

Read a Google Sheets spreadsheet.

	
class msl.io.readers.gsheets.GSheetsReader(file, **kwargs)

	Bases: Spreadsheet

Read a Google Sheets spreadsheet.

This class simply provides a convenience for reading information
from Google spreadsheets. It is not registered as a Reader
because the information in a spreadsheet is unstructured and therefore
one cannot generalize how to parse a spreadsheet to create a
Root.

	Parameters:

	
	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID or path of a Google Sheets spreadsheet.

	**kwargs – All keyword arguments are passed to GSheets.

Examples

>>> from msl.io import GSheetsReader
>>> sheets = GSheetsReader('Google Drive/registers/equipment.gsheet')
>>> sheets = GSheetsReader('1TI3pM-534SZ5DQTEZ-7HCI04648f8ZpLGbfHWJu9FSo')

	
read(cell=None, sheet=None, as_datetime=True)

	Read values from the Google Sheets spreadsheet.

	Parameters:

	
	cell (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cell(s) to read. For example, C9 will return a single value
and C9:G20 will return all values in the specified range. If not
specified then returns all values in the specified sheet.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the sheet to read the value(s) from. If there is only
one sheet in the spreadsheet then you do not need to specify the name
of the sheet.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether dates should be returned as datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or
date [https://docs.python.org/3/library/datetime.html#datetime.date] objects. If False [https://docs.python.org/3/library/constants.html#False] then dates are
returned as a string in the format of the spreadsheet cell.

	Returns:

	The value(s) of the requested cell(s).

Examples

>>> sheets.read()
[('temperature', 'humidity'), (20.33, 49.82), (20.23, 46.06), (20.41, 47.06), (20.29, 48.32)]
>>> sheets.read('B2')
49.82
>>> sheets.read('A:A')
[('temperature',), (20.33,), (20.23,), (20.41,), (20.29,)]
>>> sheets.read('A1:B1')
[('temperature', 'humidity')]
>>> sheets.read('A2:B4')
[(20.33, 49.82), (20.23, 46.06), (20.41, 47.06)]

	
sheet_names()

	Get the names of all sheets in the Google Sheets spreadsheet.

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of all sheets.

 msl.io.readers.hdf5 module

msl.io.readers.hdf5 module

Reader for the HDF5 [https://www.hdfgroup.org/] file format.

Attention

This Reader loads the entire HDF5 [https://www.hdfgroup.org/] file in memory. If you need to use any of
the more advanced features of an HDF5 [https://www.hdfgroup.org/] file, it is best to directly load
the file using H5py [https://www.h5py.org/].

	
class msl.io.readers.hdf5.HDF5Reader(file)

	Bases: Reader

Reader for the HDF5 [https://www.hdfgroup.org/] file format.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	The HDF5 [https://www.hdfgroup.org/] file format has a standard signature [https://support.hdfgroup.org/HDF5/doc/H5.format.html#Superblock].

The first 8 bytes are \x89HDF\r\n\x1a\n.

	
read(**kwargs)

	Reads the HDF5 [https://www.hdfgroup.org/] file.

	Parameters:

	**kwargs – All key-value pairs are passed to File [https://docs.h5py.org/en/stable/high/file.html#h5py.File].

 msl.io.readers.json_ module

msl.io.readers.json_ module

Read a file that was created by JSONWriter.

	
class msl.io.readers.json_.JSONReader(file)

	Bases: Reader

Read a file that was created by JSONWriter.

	Parameters:

	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object]) – The file to read.

	
static can_read(file, **kwargs)

	Checks if the text MSL JSONWriter is in the first line of the file.

	
read(**kwargs)

	Read the file that was created by JSONWriter

If a Metadata key has a value that is a
list [https://docs.python.org/3/library/stdtypes.html#list] then the list is converted to an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
with dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype] = object [https://docs.python.org/3/library/functions.html#object]

	Parameters:

	**kwargs – Accepts encoding and errors keyword arguments which are passed to
open() [https://docs.python.org/3/library/functions.html#open]. The default encoding value is 'utf-8' and the default
errors value is 'strict'. All additional keyword arguments are passed to
json.loads [https://docs.python.org/3/library/json.html#json.loads].

 msl.io.readers.spreadsheet module

msl.io.readers.spreadsheet module

Generic class for spreadsheets.

	
class msl.io.readers.spreadsheet.Spreadsheet(file)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic class for spreadsheets.

	Parameters:

	file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The location of the spreadsheet on a local hard drive or on a network.

	
property file

	The location of the spreadsheet on a local hard drive or on a network.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
read(cell=None, sheet=None, as_datetime=True)

	Read values from the spreadsheet.

	Parameters:

	
	cell (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The cell(s) to read. For example, C9 will return a single value
and C9:G20 will return all values in the specified range. If not
specified then returns all values in the specified sheet.

	sheet (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the sheet to read the value(s) from. If there is only
one sheet in the spreadsheet then you do not need to specify the name
of the sheet.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether dates should be returned as datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or
date [https://docs.python.org/3/library/datetime.html#datetime.date] objects. If False [https://docs.python.org/3/library/constants.html#False] then dates are
returned as a string.

	Returns:

	The value(s) of the requested cell(s).

	
sheet_names()

	Get the names of all sheets in the spreadsheet.

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of all sheets.

	
static to_indices(cell)

	Convert a string representation of a cell to row and column indices.

	Parameters:

	cell (str [https://docs.python.org/3/library/stdtypes.html#str]) – The cell. Can be letters only (a column) or letters and a number
(a column and a row).

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – The (row_index, column_index). If cell does not contain a row number
then the row index is None [https://docs.python.org/3/library/constants.html#None]. The row and column index are zero based.

Examples

>>> to_indices('A')
(None, 0)
>>> to_indices('A1')
(0, 0)
>>> to_indices('AA10')
(9, 26)
>>> to_indices('AAA111')
(110, 702)
>>> to_indices('MSL123456')
(123455, 9293)
>>> to_indices('BIPM')
(None, 41664)

	
static to_letters(index)

	Convert a column index to column letters.

	Parameters:

	index (int [https://docs.python.org/3/library/functions.html#int]) – The column index (zero based).

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The corresponding spreadsheet column letter(s).

Examples

>>> to_letters(0)
'A'
>>> to_letters(1)
'B'
>>> to_letters(26)
'AA'
>>> to_letters(702)
'AAA'
>>> to_letters(494264)
'ABCDE'

	
static to_slices(cells, row_step=None, column_step=None)

	Convert a range of cells to slices of row and column indices.

	Parameters:

	
	cells (str [https://docs.python.org/3/library/stdtypes.html#str]) – The cells. Can be letters only (a column) or letters and a number
(a column and a row).

	row_step (int [https://docs.python.org/3/library/functions.html#int], optional) – The step-by value for the row slice.

	column_step (int [https://docs.python.org/3/library/functions.html#int], optional) – The step-by value for the column slice.

	Returns:

	
	slice [https://docs.python.org/3/library/functions.html#slice] – The row slice.

	slice [https://docs.python.org/3/library/functions.html#slice] – The column slice.

Examples

>>> to_slices('A:A')
(slice(0, None, None), slice(0, 1, None))
>>> to_slices('A:H')
(slice(0, None, None), slice(0, 8, None))
>>> to_slices('B2:M10')
(slice(1, 10, None), slice(1, 13, None))
>>> to_slices('A5:M100', row_step=2, column_step=4)
(slice(4, 100, 2), slice(0, 13, 4))

 msl.io.writers package

msl.io.writers package

Submodules

	msl.io.writers.hdf5 module
	HDF5Writer
	HDF5Writer.write()

	msl.io.writers.json_ module
	JSONWriter
	JSONWriter.write()

 msl.io.writers.hdf5 module

msl.io.writers.hdf5 module

Writer for the HDF5 [https://www.hdfgroup.org/] file format.

Attention

requires that the h5py [https://www.h5py.org/] package is installed.

	
class msl.io.writers.hdf5.HDF5Writer(file=None, **metadata)

	Bases: Writer

Create a HDF5 [https://www.hdfgroup.org/] writer.

You can use HDF5Writer as a context manager [https://docs.python.org/3/reference/compound_stmts.html#with].
For example,

with HDF5Writer('my_file.h5') as root:
 root.create_dataset('dset', data=[1, 2, 3])

This will automatically write root to the specified file when
the with [https://docs.python.org/3/reference/compound_stmts.html#with] block exits.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the data to. Can also be specified in the write() method.

	**metadata – Key-value pairs that are used as Metadata
of the Root.

	
write(file=None, root=None, **kwargs)

	Write to a HDF5 [https://www.hdfgroup.org/] file.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the root to. If None [https://docs.python.org/3/library/constants.html#None] then uses the value of
file that was specified when HDF5Writer was instantiated.

	root (Root, optional) – Write root in HDF5 [https://www.hdfgroup.org/] format. If None [https://docs.python.org/3/library/constants.html#None] then write the
Groups and Datasets
in this HDF5Writer.

	**kwargs – All key-value pairs are passed to File [https://docs.h5py.org/en/stable/high/file.html#h5py.File].

 msl.io.writers.json_ module

msl.io.writers.json_ module

Writer for a JSON [https://www.json.org/] file format. The corresponding Reader is
JSONReader.

	
class msl.io.writers.json_.JSONWriter(file=None, **metadata)

	Bases: Writer

Create a JSON [https://www.json.org/] writer.

You can use JSONWriter as a context manager [https://docs.python.org/3/reference/compound_stmts.html#with].
For example,

>>> with JSONWriter('example.json') as root:
... dset = root.create_dataset('dset', data=[1, 2, 3])
... root.update_context_kwargs(indent=4)

This will automatically write root to the specified file using
indent=4 as a keyword argument to the write() method when
the with [https://docs.python.org/3/reference/compound_stmts.html#with] block exits.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the data to. Can also be specified in the write() method.

	**metadata – Key-value pairs that are used as Metadata
of the Root.

	
write(file=None, root=None, **kwargs)

	Write to a JSON [https://www.json.org/] file.

The first line in the output file contains a description that the
file was created by the JSONWriter. It begins with a # and
contains a version number.

Version 1.0 specifications

	Use the 'dtype' and 'data' keys to uniquely identify a
JSON [https://www.json.org/] object as a Dataset.

	If a Metadata key has a value that is a
Metadata object then the key becomes the name
of a Group and the value becomes
Metadata of that Group.

	Parameters:

	
	file (path-like [https://docs.python.org/3/glossary.html#term-path-like-object] or file-like [https://docs.python.org/3/glossary.html#term-file-object], optional) – The file to write the root to. If None [https://docs.python.org/3/library/constants.html#None] then uses the value of
file that was specified when JSONWriter was instantiated.

	root (Root, optional) – Write root in JSON [https://www.json.org/] format. If None [https://docs.python.org/3/library/constants.html#None] then write the
Groups and Datasets
in this JSONWriter.

	**kwargs – Accepts mode, encoding and errors keyword arguments which are passed
to open() [https://docs.python.org/3/library/functions.html#open]. The default encoding value is 'utf-8' and the default
errors value is 'strict'. All additional keyword arguments are passed to
json.dump [https://docs.python.org/3/library/json.html#json.dump].
The default indentation is 2.

 Accessing Keys as Class Attributes

Accessing Keys as Class Attributes

In order to access a dictionary key as a class attribute, for a Group or a
Metadata object, or the fieldnames of a numpy array in a Dataset,
then the following naming rules must be followed:

	the name matches the regex pattern ^[a-zA-Z][a-zA-Z0-9_]*$ – which states that the name
must begin with a letter and is followed by zero or more alphanumeric characters or underscores

	the name cannot be equal to any of the following:

	clear

	copy

	fromkeys

	get

	read_only

	items

	keys

	pop

	popitem

	setdefault

	update

	values

 License

License

MIT License

Copyright (c) 2018 - 2023, Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Developers

Developers

	Joseph Borbely <joseph.borbely@measurement.govt.nz>

	Rebecca Hawke <rebecca.hawke@measurement.govt.nz>

 Release Notes

Release Notes

Version 0.1.0 (2023-06-16)

Initial release.

It is also the last release to support Python 2.7, 3.5, 3.6 and 3.7

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 msl	

 	
 	
 msl.io	

 	
 	
 msl.io.base	

 	
 	
 msl.io.constants	

 	
 	
 msl.io.dataset	

 	
 	
 msl.io.dataset_logging	

 	
 	
 msl.io.dictionary	

 	
 	
 msl.io.group	

 	
 	
 msl.io.metadata	

 	
 	
 msl.io.readers	

 	
 	
 msl.io.readers.detector_responsivity_system	

 	
 	
 msl.io.readers.excel	

 	
 	
 msl.io.readers.gsheets	

 	
 	
 msl.io.readers.hdf5	

 	
 	
 msl.io.readers.json_	

 	
 	
 msl.io.readers.spreadsheet	

 	
 	
 msl.io.tables	

 	
 	
 msl.io.utils	

 	
 	
 msl.io.vertex	

 	
 	
 msl.io.writers	

 	
 	
 msl.io.writers.hdf5	

 	
 	
 msl.io.writers.json_	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_dataset() (msl.io.group.Group method)

 	add_dataset_logging() (msl.io.group.Group method)

 	add_group() (msl.io.group.Group method)

 	add_metadata() (msl.io.vertex.Vertex method)

 	
 	add_sheets() (msl.io.google_api.GSheets method)

 	ancestors() (msl.io.group.Group method)

 	append() (msl.io.google_api.GSheets method)

 	attributes (msl.io.dataset_logging.DatasetLogging property)

B

 	
 	BOOLEAN (msl.io.google_api.GCellType attribute)

C

 	
 	can_read() (msl.io.base.Reader static method)

 	(msl.io.readers.detector_responsivity_system.DRSReader static method)

 	(msl.io.readers.hdf5.HDF5Reader static method)

 	(msl.io.readers.json_.JSONReader static method)

 	cells() (msl.io.google_api.GSheets method)

 	checksum() (in module msl.io.utils)

 	clear() (msl.io.dictionary.Dictionary method)

 	close() (msl.io.google_api.GoogleAPI method)

 	(msl.io.readers.excel.ExcelReader method)

 	copy() (in module msl.io.utils)

 	(msl.io.dataset.Dataset method)

 	(msl.io.google_api.GDrive method)

 	(msl.io.google_api.GSheets method)

 	(msl.io.metadata.Metadata method)

 	
 	create() (msl.io.google_api.GSheets method)

 	create_dataset() (msl.io.group.Group method)

 	create_dataset_logging() (msl.io.group.Group method)

 	create_folder() (msl.io.google_api.GDrive method)

 	create_group() (msl.io.group.Group method)

 	CURRENCY (msl.io.google_api.GCellType attribute)

D

 	
 	data (msl.io.dataset.Dataset property)

 	Dataset (class in msl.io.dataset)

 	DatasetLogging (class in msl.io.dataset_logging)

 	datasets() (msl.io.group.Group method)

 	DATE (msl.io.google_api.GCellType attribute)

 	date_fmt (msl.io.dataset_logging.DatasetLogging property)

 	
 	DATE_TIME (msl.io.google_api.GCellType attribute)

 	delete() (msl.io.google_api.GDrive method)

 	delete_sheets() (msl.io.google_api.GSheets method)

 	descendants() (msl.io.group.Group method)

 	Dictionary (class in msl.io.dictionary)

 	download() (msl.io.google_api.GDrive method)

 	DRSReader (class in msl.io.readers.detector_responsivity_system)

E

 	
 	EMPTY (msl.io.google_api.GCellType attribute)

 	empty_trash() (msl.io.google_api.GDrive method)

 	
 	ERROR (msl.io.google_api.GCellType attribute)

 	ExcelReader (class in msl.io.readers.excel)

 	extension_delimiter_map (in module msl.io.tables)

F

 	
 	file (msl.io.base.Root property)

 	(msl.io.readers.spreadsheet.Spreadsheet property)

 	file_id() (msl.io.google_api.GDrive method)

 	folder_id() (msl.io.google_api.GDrive method)

 	
 	formatted (msl.io.google_api.GCell attribute)

 	FORMATTED (msl.io.google_api.GValueOption attribute)

 	FORMATTED_STRING (msl.io.google_api.GDateTimeOption attribute)

 	FORMULA (msl.io.google_api.GValueOption attribute)

 	fromkeys() (msl.io.metadata.Metadata method)

G

 	
 	GCell (class in msl.io.google_api)

 	GCellType (class in msl.io.google_api)

 	GDateTimeOption (class in msl.io.google_api)

 	GDrive (class in msl.io.google_api)

 	get_basename() (in module msl.io.utils)

 	get_bytes() (msl.io.base.Reader static method)

 	get_extension() (msl.io.base.Reader static method)

 	get_lines() (msl.io.base.Reader static method)

 	
 	git_head() (in module msl.io.utils)

 	GMail (class in msl.io.google_api)

 	GoogleAPI (class in msl.io.google_api)

 	Group (class in msl.io.group)

 	groups() (msl.io.group.Group method)

 	GSheets (class in msl.io.google_api)

 	GSheetsReader (class in msl.io.readers.gsheets)

 	GValueOption (class in msl.io.google_api)

H

 	
 	HDF5Reader (class in msl.io.readers.hdf5)

 	
 	HDF5Writer (class in msl.io.writers.hdf5)

 	HOME_DIR (in module msl.io.constants)

I

 	
 	is_admin() (in module msl.io.utils)

 	is_dataset() (msl.io.group.Group static method)

 	is_dataset_logging() (msl.io.group.Group static method)

 	is_dir_accessible() (in module msl.io.utils)

 	is_file() (msl.io.google_api.GDrive method)

 	is_file_readable() (in module msl.io.utils)

 	
 	is_folder() (msl.io.google_api.GDrive method)

 	is_group() (msl.io.group.Group static method)

 	IS_PYTHON2 (in module msl.io.constants)

 	IS_PYTHON3 (in module msl.io.constants)

 	is_read_only() (msl.io.google_api.GDrive method)

 	items() (msl.io.dictionary.Dictionary method)

J

 	
 	JSONReader (class in msl.io.readers.json_)

 	
 	JSONWriter (class in msl.io.writers.json_)

K

 	
 	keys() (msl.io.dictionary.Dictionary method)

L

 	
 	logger (msl.io.dataset_logging.DatasetLogging property)

M

 	
 	Metadata (class in msl.io.metadata)

 	metadata (msl.io.vertex.Vertex property)

 	MIME_TYPE (msl.io.google_api.GSheets attribute)

 	MIME_TYPE_FOLDER (msl.io.google_api.GDrive attribute)

 	
 module

 	msl.io

 	msl.io.base

 	msl.io.constants

 	msl.io.dataset

 	msl.io.dataset_logging

 	msl.io.dictionary

 	msl.io.group

 	msl.io.metadata

 	msl.io.readers

 	msl.io.readers.detector_responsivity_system

 	msl.io.readers.excel

 	msl.io.readers.gsheets

 	msl.io.readers.hdf5

 	msl.io.readers.json_

 	msl.io.readers.spreadsheet

 	msl.io.tables

 	msl.io.utils

 	msl.io.vertex

 	msl.io.writers

 	msl.io.writers.hdf5

 	msl.io.writers.json_

 	move() (msl.io.google_api.GDrive method)

 	
 msl.io

 	module

 	
 msl.io.base

 	module

 	
 msl.io.constants

 	module

 	
 msl.io.dataset

 	module

 	
 	
 msl.io.dataset_logging

 	module

 	
 msl.io.dictionary

 	module

 	
 msl.io.group

 	module

 	
 msl.io.metadata

 	module

 	
 msl.io.readers

 	module

 	
 msl.io.readers.detector_responsivity_system

 	module

 	
 msl.io.readers.excel

 	module

 	
 msl.io.readers.gsheets

 	module

 	
 msl.io.readers.hdf5

 	module

 	
 msl.io.readers.json_

 	module

 	
 msl.io.readers.spreadsheet

 	module

 	
 msl.io.tables

 	module

 	
 msl.io.utils

 	module

 	
 msl.io.vertex

 	module

 	
 msl.io.writers

 	module

 	
 msl.io.writers.hdf5

 	module

 	
 msl.io.writers.json_

 	module

N

 	
 	name (msl.io.vertex.Vertex property)

 	
 	NUMBER (msl.io.google_api.GCellType attribute)

P

 	
 	parent (msl.io.vertex.Vertex property)

 	path() (msl.io.google_api.GDrive method)

 	
 	PERCENT (msl.io.google_api.GCellType attribute)

 	profile() (msl.io.google_api.GMail method)

R

 	
 	read() (in module msl.io)

 	(msl.io.base.Reader method)

 	(msl.io.readers.detector_responsivity_system.DRSReader method)

 	(msl.io.readers.excel.ExcelReader method)

 	(msl.io.readers.gsheets.GSheetsReader method)

 	(msl.io.readers.hdf5.HDF5Reader method)

 	(msl.io.readers.json_.JSONReader method)

 	(msl.io.readers.spreadsheet.Spreadsheet method)

 	read_only (msl.io.dataset.Dataset property)

 	(msl.io.dictionary.Dictionary property)

 	(msl.io.vertex.Vertex property)

 	read_only() (msl.io.google_api.GDrive method)

 	read_table() (in module msl.io)

 	read_table_excel() (in module msl.io.tables)

 	read_table_gsheets() (in module msl.io.tables)

 	
 	read_table_text() (in module msl.io.tables)

 	Reader (class in msl.io.base)

 	register() (in module msl.io.utils)

 	remove() (msl.io.group.Group method)

 	remove_empty_rows() (msl.io.dataset_logging.DatasetLogging method)

 	remove_handler() (msl.io.dataset_logging.DatasetLogging method)

 	remove_write_permissions() (in module msl.io.utils)

 	rename() (msl.io.google_api.GDrive method)

 	rename_sheet() (msl.io.google_api.GSheets method)

 	require_dataset() (msl.io.group.Group method)

 	require_dataset_logging() (msl.io.group.Group method)

 	require_group() (msl.io.group.Group method)

 	Root (class in msl.io.base)

 	ROOT_NAMES (msl.io.google_api.GDrive attribute)

 	run_as_admin() (in module msl.io.utils)

S

 	
 	save() (msl.io.base.Writer method)

 	SCIENTIFIC (msl.io.google_api.GCellType attribute)

 	search() (in module msl.io.utils)

 	send() (msl.io.google_api.GMail method)

 	send_email() (in module msl.io.utils)

 	SERIAL_NUMBER (msl.io.google_api.GDateTimeOption attribute)

 	SERIAL_NUMBER_ORIGIN (msl.io.google_api.GSheets attribute)

 	service (msl.io.google_api.GoogleAPI property)

 	set_logger() (msl.io.dataset_logging.DatasetLogging method)

 	
 	set_root() (msl.io.base.Writer method)

 	shared_drives() (msl.io.google_api.GDrive method)

 	sheet_id() (msl.io.google_api.GSheets method)

 	sheet_names() (msl.io.google_api.GSheets method)

 	(msl.io.readers.excel.ExcelReader method)

 	(msl.io.readers.gsheets.GSheetsReader method)

 	(msl.io.readers.spreadsheet.Spreadsheet method)

 	Spreadsheet (class in msl.io.readers.spreadsheet)

 	STRING (msl.io.google_api.GCellType attribute)

T

 	
 	TIME (msl.io.google_api.GCellType attribute)

 	to_datetime() (msl.io.google_api.GSheets static method)

 	to_indices() (msl.io.readers.spreadsheet.Spreadsheet static method)

 	
 	to_letters() (msl.io.readers.spreadsheet.Spreadsheet static method)

 	to_slices() (msl.io.readers.spreadsheet.Spreadsheet static method)

 	tree() (msl.io.base.Root method)

 	type (msl.io.google_api.GCell attribute)

U

 	
 	UNFORMATTED (msl.io.google_api.GValueOption attribute)

 	UNKNOWN (msl.io.google_api.GCellType attribute)

 	
 	update_context_kwargs() (msl.io.base.Writer method)

 	upload() (msl.io.google_api.GDrive method)

V

 	
 	value (msl.io.google_api.GCell attribute)

 	values() (msl.io.dictionary.Dictionary method)

 	(msl.io.google_api.GSheets method)

 	
 	version_info (in module msl.io)

 	Vertex (class in msl.io.vertex)

W

 	
 	workbook (msl.io.readers.excel.ExcelReader property)

 	write() (msl.io.base.Writer method)

 	(msl.io.google_api.GSheets method)

 	(msl.io.writers.hdf5.HDF5Writer method)

 	(msl.io.writers.json_.JSONWriter method)

 	
 	Writer (class in msl.io.base)

_static/file.png

_images/hdf5_data_model.png
Root

Metadata

Metadata

Metadata Metadata

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 MSL-IO

 		
 Install

 		
 Dependencies

 		
 Optional Dependencies

 		
 Group

 		
 Dataset

 		
 Slicing and Indexing

 		
 Arithmetic Operations

 		
 A Dataset for Logging Records

 		
 Metadata

 		
 Readers

 		
 DRS - Light Standards

 		
 DRSReader

 		
 HDF5

 		
 HDF5Reader

 		
 JSON

 		
 JSONReader

 		
 Create a New Reader

 		
 Writers

 		
 HDF5

 		
 HDF5Writer

 		
 JSON

 		
 JSONWriter

 		
 Create a New Writer

 		
 API

 		
 Package Structure

 		
 msl.io

 		
 msl.io.base

 		
 msl.io.constants

 		
 msl.io.dataset

 		
 msl.io.dataset_logging

 		
 msl.io.dictionary

 		
 msl.io.google_api

 		
 msl.io.group

 		
 msl.io.metadata

 		
 msl.io.tables

 		
 msl.io.utils

 		
 msl.io.vertex

 		
 msl.io.readers

 		
 msl.io.writers

 		
 Accessing Keys as Class Attributes

 		
 License

 		
 Authors

 		
 Release Notes

